Advertisement

Intensive Care Medicine

, Volume 44, Issue 6, pp 868–883 | Cite as

The use of echocardiographic indices in defining and assessing right ventricular systolic function in critical care research

  • Stephen J. HuangEmail author
  • Marek Nalos
  • Louise Smith
  • Arvind Rajamani
  • Anthony S. McLean
Systematic Review

Abstract

Purpose

Many echocardiographic indices (or methods) for assessing right ventricular (RV) function are available, but each has its strengths and limitations. In some cases, there might be discordance between the indices. We conducted a systematic review to audit the echocardiographic RV assessments in critical care research to see if a consistent pattern existed. We specifically looked into the kind and number of RV indices used, and how RV dysfunction was defined in each study.

Methods

Studies conducted in critical care settings and reported echocardiographic RV function indices from 1997 to 2017 were searched systematically from three databases. Non-adult studies, case reports, reviews and secondary studies were excluded. These studies’ characteristics and RV indices reported were summarized.

Results

Out of 495 non-duplicated publications found, 81 studies were included in our systematic review. There has been an increasing trend of studying RV function by echocardiography since 2001, and most were conducted in ICU. Thirty-one studies use a single index, mostly TAPSE, to define RV dysfunction; 33 used composite indices and the combinations varied between studies. Seventeen studies did not define RV dysfunction. For those using composite indices, many did not explain their choices.

Conclusions

TAPSE seemed to be the most popular index in the last 2–3 years. Many studies used combinations of indices but, apart from cor pulmonale, we could not find a consistent pattern of RV assessment and definition of RV dysfunction amongst these studies.

Keywords

Echocardiography Right ventricular function Critical care Intensive care Emergency Anaesthetics 

Notes

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics Approval

Ethics approval for systematic review is not required.

Supplementary material

134_2018_5211_MOESM1_ESM.pdf (27 kb)
Supplementary material 1 (PDF 26 kb)
134_2018_5211_MOESM2_ESM.pdf (227 kb)
Supplementary material 2 (PDF 228 kb)

References

  1. 1.
    Mehta SR, Eikelboom JW, Natarajan MK et al (2001) Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction. J Am Coll Cardiol 37:37–43PubMedCrossRefGoogle Scholar
  2. 2.
    Dessap AM, Dessap AM, Boissier F et al (2016) Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 42:862–870.  https://doi.org/10.1007/s00134-015-4141-2 CrossRefGoogle Scholar
  3. 3.
    Matthay MA, Chatterjee K (1988) Bedside catheterization of the pulmonary artery: risks compared with benefits. Ann Intern Med 109:826–834PubMedCrossRefGoogle Scholar
  4. 4.
    Osman D, Monnet X, Castelain V et al (2009) Incidence and prognostic value of right ventricular failure in acute respiratory distress syndrome. Intensive Care Med 35:69–76.  https://doi.org/10.1007/s00134-008-1307-1 PubMedCrossRefGoogle Scholar
  5. 5.
    Armour JA, Randall WC (1970) Structural basis for cardiac function. Am J Physiol 218:1517–1523PubMedGoogle Scholar
  6. 6.
    McLean AS, Tang B, Nalos M et al (2003) Increased B-type natriuretic peptide (BNP) level is a strong predictor for cardiac dysfunction in intensive care unit patients. Anaesth Intensive Care 31:21–27PubMedGoogle Scholar
  7. 7.
    McLean AS, Huang SJ, Nalos M et al (2003) The confounding effects of age, gender, serum creatinine, and electrolyte concentrations on plasma B-type natriuretic peptide concentrations in critically ill patients. Crit Care Med 31:2611–2618.  https://doi.org/10.1097/01.CCM.0000094225.18237.20 PubMedCrossRefGoogle Scholar
  8. 8.
    McLean AS, Huang SJ (2007) Prognostic value of natriuretic peptides in severe sepsis—reply. Crit Care Med 35:1806–1806.  https://doi.org/10.1097/01.CCM.0000269344.37999.8B CrossRefGoogle Scholar
  9. 9.
    Ochiai Y, Morita S, Tanoue Y et al (1999) Use of transesophageal echocardiography for postoperative evaluation of right ventricular function. Ann Thorac Surg 67:146–152PubMedCrossRefGoogle Scholar
  10. 10.
    Ochiai Y, Morita S, Tanoue Y et al (1998) Effects of amrinone, a phosphodiesterase inhibitor, on right ventricular/arterial coupling immediately after cardiac operations. J Thorac Cardiovasc Surg 116:139–147.  https://doi.org/10.1016/S0022-5223(98)70252-1 PubMedCrossRefGoogle Scholar
  11. 11.
    Vieillard-Baron A, Schmitt JM, Augarde R et al (2001) Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med 29:1551–1555Google Scholar
  12. 12.
    Jackson RE, Rudoni RR, Hauser AM et al (2000) Prospective evaluation of two-dimensional transthoracic echocardiography in emergency department patients with suspected pulmonary embolism. Acad Emerg Med 7:994–998PubMedCrossRefGoogle Scholar
  13. 13.
    Vieillard-Baron A, Page B, Augarde R et al (2001) Acute cor pulmonale in massive pulmonary embolism: incidence, echocardiographic pattern, clinical implications and recovery rate. Intensive Care Med 27:1481–1486.  https://doi.org/10.1007/s001340101032 PubMedCrossRefGoogle Scholar
  14. 14.
    Maslow AD, Regan MM, Panzica P et al (2002) Precardiopulmonary bypass right ventricular function is associated with poor outcome after coronary artery bypass grafting in patients with severe left ventricular systolic dysfunction. Anesth Analg 95:1507–1518 (table of contents)Google Scholar
  15. 15.
    Catena E, Milazzo F, Merli M et al (2004) Echocardiographic evaluation of patients receiving a new left ventricular assist device: the Impella recover 100. Eur J Echocardiogr 5:430–437.  https://doi.org/10.1016/j.euje.2004.03.008 PubMedCrossRefGoogle Scholar
  16. 16.
    Mansencal N, Joseph T, Vieillard-Baron A et al (2005) Diagnosis of right ventricular dysfunction in acute pulmonary embolism using helical computed tomography. Am J Cardiol 95:1260–1263.  https://doi.org/10.1016/j.amjcard.2005.01.064 PubMedCrossRefGoogle Scholar
  17. 17.
    Bal L, Thierry S, Brocas E et al (2006) B-type natriuretic peptide (BNP) and N-terminal-proBNP for heart failure diagnosis in shock or acute respiratory distress. Acta Anaesthesiol Scand 50:340–347.  https://doi.org/10.1111/j.1399-6576.2006.00963.x PubMedCrossRefGoogle Scholar
  18. 18.
    Lamia B, Teboul J-L, Monnet X et al (2007) Relationship between the tricuspid annular plane systolic excursion and right and left ventricular function in critically ill patients. Intensive Care Med 33:2143–2149.  https://doi.org/10.1007/s00134-007-0881-y PubMedCrossRefGoogle Scholar
  19. 19.
    Mokart D, Sannini A, Brun J-P et al (2007) N-terminal pro-brain natriuretic peptide as an early prognostic factor in cancer patients developing septic shock. Crit Care 11:R37.  https://doi.org/10.1186/cc5721 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gallotta G, Palmieri V, Piedimonte V et al (2008) Increased troponin I predicts in-hospital occurrence of hemodynamic instability in patients with sub-massive or non-massive pulmonary embolism independent to clinical, echocardiographic and laboratory information. Int J Cardiol 124:351–357.  https://doi.org/10.1016/j.ijcard.2006.03.096 PubMedCrossRefGoogle Scholar
  21. 21.
    Aksay E, Yanturali S, Kiyan S (2007) Can elevated troponin I levels predict complicated clinical course and inhospitat mortality in patients with acute pulmonary embolism? Am J Emerg Med 25:138–143.  https://doi.org/10.1016/j.ajem.2006.06.005 PubMedCrossRefGoogle Scholar
  22. 22.
    Kline JA, Hernandez-Nino J, Jones AE et al (2008) Prospective study of the clinical features and outcomes of emergency department patients with delayed diagnosis of pulmonary embolism. Acad Emerg Med 14:592–598.  https://doi.org/10.1111/j.1553-2712.2007.tb01841.x CrossRefGoogle Scholar
  23. 23.
    Sade LE, Gulmez O, Eroglu S et al (2007) Noninvasive estimation of right ventricular filling pressure by ratio of early tricuspid inflow to annular diastolic velocity in patients with and without recent cardiac surgery. JASE 20:982–988.  https://doi.org/10.1016/j.echo.2007.01.012 CrossRefGoogle Scholar
  24. 24.
    Vieillard-Baron A, Charron C, Caille V et al (2007) Prone positioning unloads the right ventricle in severe ARDS. Chest 132:1440–1446.  https://doi.org/10.1378/chest.07-1013 PubMedCrossRefGoogle Scholar
  25. 25.
    Kline JA, Zeitouni R, Marchick MR et al (2008) Comparison of 8 biomarkers for prediction of right ventricular hypokinesis 6 months after submassive pulmonary embolism. Am Heart J 156:308–314.  https://doi.org/10.1016/j.ahj.2008.03.026 PubMedCrossRefGoogle Scholar
  26. 26.
    Tousignant CP, Bowry R, Levesque S, Denault AY (2008) Regional differences in color tissue Doppler-derived measures of longitudinal right ventricular function using transesophageal and transthoracic echocardiography. J Cardiothorac Vasc Anesth 22:400–405.  https://doi.org/10.1053/j.jvca.2007.07.014 PubMedCrossRefGoogle Scholar
  27. 27.
    Palmieri V, Gallotta G, Rendina D et al (2008) Troponin I and right ventricular dysfunction for risk assessment in patients with nonmassive pulmonary embolism in the emergency department in combination with clinically based risk score. Intern Emerg Med 3:131–138.  https://doi.org/10.1007/s11739-008-0134-2 PubMedCrossRefGoogle Scholar
  28. 28.
    Dessap AM, Charron C, Devaquet J et al (2009) Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med 35:1850–1858.  https://doi.org/10.1007/s00134-009-1569-2 CrossRefGoogle Scholar
  29. 29.
    Tousignant C, Bowry R, Cruz JD, Mazer CD (2009) Induction of anesthesia does not alter tricuspid annular velocities: a tissue Doppler assessment. Can J Anaesth 56:757–762.  https://doi.org/10.1007/s12630-009-9157-z PubMedCrossRefGoogle Scholar
  30. 30.
    Mahjoub Y, Pila C, Friggeri A et al (2009) Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med 37:2570–2575.  https://doi.org/10.1097/CCM.0b013e3181a380a3 PubMedCrossRefGoogle Scholar
  31. 31.
    Gernoth C, Wagner G, Pelosi P, Luecke T (2009) Respiratory and haemodynamic changes during decremental open lung positive end-expiratory pressure titration in patients with acute respiratory distress syndrome. Crit Care 13:R59.  https://doi.org/10.1186/cc7786 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ricci JM, Dukkipati SR, Pica MC et al (2009) Malignant ventricular arrhythmias in patients with acute right ventricular infarction undergoing mechanical reperfusion. Am J Cardiol 104:1678–1683.  https://doi.org/10.1016/j.amjcard.2009.07.047 PubMedCrossRefGoogle Scholar
  33. 33.
    Matyal R, Mahmood F, Hess P et al (2010) Right ventricular echocardiographic predictors of postoperative supraventricular arrhythmias after thoracic surgery: a pilot study. Ann Thorac Surg 90:1080–1087.  https://doi.org/10.1016/j.athoracsur.2010.05.019 PubMedCrossRefGoogle Scholar
  34. 34.
    Karakilic E, Kepez A, Abali G et al (2010) The relationship between B-type natriuretic peptide levels and echocardiographic parameters in patients with heart failure admitted to the emergency department. Anadolu Kardiyol Derg 10:143–149.  https://doi.org/10.5152/akd.2010.040 PubMedCrossRefGoogle Scholar
  35. 35.
    Gackowski A, Chrustowicz A, Kapelak B et al (2010) Forward stroke volume is predictor of perioperative course in patients with mitral regurgitation undergoing mitral valve replacement. Cardiol J 17:386–389PubMedGoogle Scholar
  36. 36.
    Rendina D, De Bonis S, Gallotta G et al (2010) Clinical, historical and diagnostic findings associated with right ventricular dysfunction in patients with central and non-massive pulmonary embolism. Intern Emerg Med 5:53–59.  https://doi.org/10.1007/s11739-009-0330-8 PubMedCrossRefGoogle Scholar
  37. 37.
    Papaioannou VE, Stakos DA, Dragoumanis CK, Pneumatikos IA (2010) Relation of tricuspid annular displacement and tissue Doppler imaging velocities with duration of weaning in mechanically ventilated patients with acute pulmonary edema. BMC Cardiovasc Disord 10:20.  https://doi.org/10.1186/1471-2261-10-20 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Dessap AM, Boissier F, Leon R et al (2010) Prevalence and prognosis of shunting across patent foramen ovale during acute respiratory distress syndrome. Crit Care Med 38:1786–1792.  https://doi.org/10.1097/CCM.0b013e3181eaa9c8 CrossRefGoogle Scholar
  39. 39.
    Fougeres E, Teboul J-L, Richard C et al (2010) Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Crit Care Med 38:802–807.  https://doi.org/10.1097/CCM.0b013e3181c587fd PubMedCrossRefGoogle Scholar
  40. 40.
    Haas S, Haese A, Goetz AE, Kubitz JC (2011) Haemodynamics and cardiac function during robotic-assisted laparoscopic prostatectomy in steep Trendelenburg position. Int J Med Robotics Comput Assist Surg 7:408–413.  https://doi.org/10.1002/rcs.410 CrossRefGoogle Scholar
  41. 41.
    Albers J, Ister D, Kayhan N, Vahl CF (2011) Postoperative non-invasive assessment of pulmonary vascular resistance using Doppler echocardiography. Interact Cardiovasc Thorac Surg 13:579–584.  https://doi.org/10.1510/icvts.2011.271619 PubMedCrossRefGoogle Scholar
  42. 42.
    Park JH, Park YS, Kim YJ et al (2011) Differentiation between acute and chronic cor pulmonales with midventricular systolic strain of the right ventricle in the emergency department. Heart Vessels 26:435–439.  https://doi.org/10.1007/s00380-010-0072-6 PubMedCrossRefGoogle Scholar
  43. 43.
    Golpe R, Castro-Anon O, Perez-de-Llano LA et al (2011) Electrocardiogram score predicts severity of pulmonary embolism in hemodynamically stable patients. J Hosp Med 6:285–289.  https://doi.org/10.1002/jhm.868 PubMedCrossRefGoogle Scholar
  44. 44.
    Brown SM, Pittman J, Miller RRI et al (2011) Right and left heart failure in severe H1N1 influenza A infection. Eur Respir J 37:112–118.  https://doi.org/10.1183/09031936.00008210 PubMedCrossRefGoogle Scholar
  45. 45.
    Guervilly C, Forel J-M, Hraiech S et al (2012) Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 40:1539–1545.  https://doi.org/10.1097/CCM.0b013e3182451b4a PubMedCrossRefGoogle Scholar
  46. 46.
    Schuuring MJ, Bolmers PPM, Mulder BJM et al (2012) Right ventricular function declines after cardiac surgery in adult patients with congenital heart disease. Int J Cardiovasc Imaging 28:755–762.  https://doi.org/10.1007/s10554-011-9892-4 PubMedCrossRefGoogle Scholar
  47. 47.
    Furian T, Aguiar C, Prado K et al (2012) Ventricular dysfunction and dilation in severe sepsis and septic shock: relation to endothelial function and mortality. J Crit Care 27:15.  https://doi.org/10.1016/j.jcrc.2011.06.017 CrossRefGoogle Scholar
  48. 48.
    Corciova FC, Corciova C, Georgescu CA et al (2012) Echocardiographic predictors of adverse short-term outcomes after heart surgery in patients with mitral regurgitation and pulmonary hypertension. Heart Surg Forum 15:127–132.  https://doi.org/10.1532/HSF98.20121008 CrossRefGoogle Scholar
  49. 49.
    Fichet J, Moreau L, Genee O et al (2012) Feasibility of right ventricular longitudinal systolic function evaluation with transthoracic echocardiographic indices derived from tricuspid annular motion: a preliminary study in acute respiratory distress syndrome. Echocardiography 29:513–521.  https://doi.org/10.1111/j.1540-8175.2011.01650.x PubMedCrossRefGoogle Scholar
  50. 50.
    Harmankaya A, Akilli H, Gul M et al (2013) Assessment of right ventricular functions in patients with sepsis, severe sepsis and septic shock and its prognostic importance: a tissue Doppler study. J Crit Care 28:–1111.e11.  https://doi.org/10.1016/j.jcrc.2013.07.059
  51. 51.
    Fagnoul D, Pasquier P, Bodson L et al (2013) Myocardial dysfunction during H1N1 influenza infection. J Crit Care 28:321–327.  https://doi.org/10.1016/j.jcrc.2013.01.010 PubMedCrossRefGoogle Scholar
  52. 52.
    Franchi F, Faltoni A, Cameli M et al (2013) Influence of positive end-expiratory pressure on myocardial strain assessed by speckle tracking echocardiography in mechanically ventilated patients. Biomed Res Int 2013:918584–918588.  https://doi.org/10.1155/2013/918548 CrossRefGoogle Scholar
  53. 53.
    Schuuring MJ, van Gulik EC, Koolbergen DR et al (2013) Determinants of clinical right ventricular failure after congenital heart surgery in adults. J Cardiothorac Vasc Anesth 27:723–727.  https://doi.org/10.1053/j.jvca.2012.10.022 PubMedCrossRefGoogle Scholar
  54. 54.
    Lheritier G, Legras A, Caille A et al (2013) Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: a multicenter study. Intensive Care Med 39:1734–1742.  https://doi.org/10.1007/s00134-013-3017-6 PubMedCrossRefGoogle Scholar
  55. 55.
    Boissier F, Katsahian S, Razazi K et al (2013) Prevalence and prognosis of cor pulmonale during protective ventilation for acute respiratory distress syndrome. Intensive Care Med 39:1725–1733.  https://doi.org/10.1007/s00134-013-2941-9 PubMedCrossRefGoogle Scholar
  56. 56.
    Hyllen S, Nozohoor S, Ingvarsson A et al (2014) Right ventricular performance after valve repair for chronic degenerative mitral regurgitation. Ann Thorac Surg 98:2023–2031.  https://doi.org/10.1016/j.athoracsur.2014.07.075 PubMedCrossRefGoogle Scholar
  57. 57.
    Kusunose K, Tsutsui RS, Bhatt K et al (2014) Prognostic value of RV function before and after lung transplantation. JACC Cardiovasc Imag 7:1084–1094.  https://doi.org/10.1016/j.jcmg.2014.07.012 CrossRefGoogle Scholar
  58. 58.
    Madhavan S, Dutt PG, Thingnam SKS, Rohit MK (2015) Perioperative follow-up of patients with severe pulmonary artery hypertension secondary to left heart disease: a single center, prospective, observational study. J Cardiothorac Vasc Anesth 29:1524–1532.  https://doi.org/10.1053/j.jvca.2015.08.009 PubMedCrossRefGoogle Scholar
  59. 59.
    Yildirim B, Biteker FS, Basaran O et al (2015) Is there a potential role for echocardiography in adult patients with CAP? Am J Emerg Med 33:1672–1676.  https://doi.org/10.1016/j.ajem.2015.06.036 PubMedCrossRefGoogle Scholar
  60. 60.
    Ramjee V, Grossestreuer AV, Yao Y et al (2015) Right ventricular dysfunction after resuscitation predicts poor outcomes in cardiac arrest patients independent of left ventricular function. Resuscitation 96:186–191.  https://doi.org/10.1016/j.resuscitation.2015.08.008 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bloomer TL, Thomassee EJ, Fong PP (2015) Acute pulmonary embolism network and multidisciplinary response team approach to treatment. Crit Pathw Cardiol 14:90–96.  https://doi.org/10.1097/HPC.0000000000000049 PubMedCrossRefGoogle Scholar
  62. 62.
    Denault AY, Couture P, Beaulieu Y et al (2015) Right ventricular depression after cardiopulmonary bypass for valvular surgery. J Cardiothorac Vasc Anesth 29:836–844.  https://doi.org/10.1053/j.jvca.2015.01.011 PubMedCrossRefGoogle Scholar
  63. 63.
    Guinot PG, Abou Arab O, Longrois D, Dupont H (2015) Right ventricular systolic dysfunction and vena cava dilatation precede alteration of renal function in adult patients undergoing cardiac surgery. An observational study. Eur J Anaesthesiol 32:535–542.  https://doi.org/10.1097/EJA.0000000000000149 PubMedCrossRefGoogle Scholar
  64. 64.
    Denault AY, Beaulieu Y, Couture P et al (2015) Acute intraoperative effect of intravenous amiodarone on right ventricular function in patients undergoing valvular surgery. Eur Heart J Acute Cardiovasc Care 4:316–325.  https://doi.org/10.1177/2048872614549102 PubMedCrossRefGoogle Scholar
  65. 65.
    Imada T, Kannibayashi T, Ota C et al (2015) Intraoperative right ventricular fractional area change is a good indicator of right ventricular contractility: a retrospective comparison using two- and three-dimensional echocardiography. J Cardiothorac Vasc Anesth 29:831–835.  https://doi.org/10.1053/j.jvca.2014.12.005 PubMedCrossRefGoogle Scholar
  66. 66.
    Khemasuwan D, Yingchoncharoen T, Tunsupon P et al (2015) Right ventricular echocardiographic parameters are associated with mortality after acute pulmonary embolism. JASE 28:355–362.  https://doi.org/10.1016/j.echo.2014.11.012 CrossRefGoogle Scholar
  67. 67.
    Azari A, Bigdelu L, Moravvej Z (2015) Surgical embolectomy in the management of massive and sub-massive pulmonary embolism: the results of 30 consecutive ill patients. ARYA Atheroscler 11:208–213PubMedPubMedCentralGoogle Scholar
  68. 68.
    Perez-Teran P, Roca O, Rodriguez-Palomares J et al (2015) Influence of right ventricular function on the development of primary graft dysfunction after Lung transplantation. J Heart Lung Transplant 34:1423–1429.  https://doi.org/10.1016/j.healun.2015.05.026 PubMedCrossRefGoogle Scholar
  69. 69.
    Russell FM, Moore CL, Courtney DM et al (2015) Independent evaluation of a simple clinical prediction rule to identify right ventricular dysfunction in patients with shortness of breath. Am J Emerg Med 33:542–547.  https://doi.org/10.1016/j.ajem.2015.01.026 PubMedCrossRefGoogle Scholar
  70. 70.
    Legras A, Caille A, Bégot E et al (2015) Acute respiratory distress syndrome (ARDS)-associated acute cor pulmonale and patent foramen ovale: a multicenter noninvasive hemodynamic study. Crit Care 19:174.  https://doi.org/10.1186/s13054-015-0898-5 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Dahhan T, Siddiqui I, Tapson VF et al (2016) Clinical and echocardiographic predictors of mortality in acute pulmonary embolism. Cardiovasc Ultrasound 14:44.  https://doi.org/10.1186/s12947-016-0087-y PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Nadziakiewicz P, Niklewski T, Szyguła-Jurkiewicz B et al (2016) Preoperative echocardiography examination of right ventricle function in patients scheduled for LVAD implantation correlates with postoperative hemodynamic examinations. Ann Transplant 21:500–507PubMedCrossRefGoogle Scholar
  73. 73.
    Tuzovic M, Adigopula S, Amsallem M et al (2016) Regional right ventricular dysfunction in acute pulmonary embolism: relationship with clot burden and biomarker profile. Int J Cardiovasc Imaging 32:389–398.  https://doi.org/10.1007/s10554-015-0780-1 PubMedCrossRefGoogle Scholar
  74. 74.
    Biteker FS, Basaran O, Dogan V et al (2016) Prognostic value of transthoracic echocardiography and biomarkers of cardiac dysfunction in community-acquired pneumonia. Clin Microbiol Infect 22:1006.e1–1006.e6.  https://doi.org/10.1016/j.cmi.2016.08.016
  75. 75.
    Lazzeri C, Cianchi G, Bonizzoli M et al (2016) Right ventricle dilation as a prognostic factor in refractory acute respiratory distress syndrome requiring veno-venous extracorporeal membrane oxygenation. Minerva Anestesiol 82:1043–1049PubMedGoogle Scholar
  76. 76.
    Mishra A, Kumar B, Dutta V et al (2016) Comparative effect of levosimendan and milrinone in cardiac surgery patients with pulmonary hypertension and left ventricular dysfunction. J Cardiothorac Vasc Anesth 30:639–646.  https://doi.org/10.1053/j.jvca.2016.01.015 PubMedCrossRefGoogle Scholar
  77. 77.
    Abtahi F, Farmanesh M, Moaref A, Shekarforoush S (2016) Right ventricular involvement in either anterior or inferior myocardial infarction. Int Cardiovasc Res J 10:67–71.  https://doi.org/10.17795/icrj-10(2)67 CrossRefGoogle Scholar
  78. 78.
    Lazzeri C, Bonizzoli M, Cozzolino M et al (2016) Serial measurements of troponin and echocardiography in patients with moderate-to-severe acute respiratory distress syndrome. J Crit Care 33:132–136.  https://doi.org/10.1016/j.jcrc.2016.01.004 PubMedCrossRefGoogle Scholar
  79. 79.
    Lazzeri C, Cianchi G, Bonizzoli M et al (2016) Pulmonary vascular dysfunction in refractory acute respiratory distress syndrome before veno-venous extracorporeal membrane oxygenation. Acta Anaesthesiol Scand 60:485–491.  https://doi.org/10.1111/aas.12643 PubMedCrossRefGoogle Scholar
  80. 80.
    Cecchini J, Boissier F, Gibelin A et al (2016) Pulmonary vascular dysfunction and cor pulmonale during acute respiratory distress syndrome in sicklers. Shock 46:358–364.  https://doi.org/10.1097/SHK.0000000000000640 PubMedCrossRefGoogle Scholar
  81. 81.
    Dudzinski DM, Hariharan P, Parry BA et al (2017) Assessment of right ventricular strain by computed tomography versus echocardiography in acute pulmonary embolism. Acad Emerg Med 24:337–343.  https://doi.org/10.1111/acem.13108 PubMedCrossRefGoogle Scholar
  82. 82.
    Jia D, Zhou X-M, Hou G (2017) Estimation of right ventricular dysfunction by computed tomography pulmonary angiography: a valuable adjunct for evaluating the severity of acute pulmonary embolism. J Thromb Thrombolysis 43:271–278.  https://doi.org/10.1007/s11239-016-1438-0 PubMedCrossRefGoogle Scholar
  83. 83.
    Diaz-Gomez JL, Alvarez AB, Danaraj JJ et al (2017) A novel semiquantitative assessment of right ventricular systolic function with a modified subcostal echocardiographic view. Echocardiography 34:44–52.  https://doi.org/10.1111/echo.13400 PubMedCrossRefGoogle Scholar
  84. 84.
    Weekes AJ, Johnson AK, Troha D et al (2017) Prognostic value of right ventricular dysfunction markers for serious adverse events in acute normotensive pulmonary embolism. J Emerg Med 52:137–150.  https://doi.org/10.1016/j.jemermed.2016.09.002 PubMedCrossRefGoogle Scholar
  85. 85.
    Vieillard-Baron A, Slama M, Cholley B et al (2007) Echocardiography in the intensive care unit: from evolution to revolution? Intensive Care Med 34:243–249.  https://doi.org/10.1007/s00134-007-0923-5 PubMedCrossRefGoogle Scholar
  86. 86.
    Jardin F, Dubourg O, Margairaz A, Bourdarias J-P (1987) Inspiratory impairment in right ventricular performance during acute asthma. Chest 92:789–795.  https://doi.org/10.1378/chest.92.5.789 PubMedCrossRefGoogle Scholar
  87. 87.
    Mitaka C, Nagura T, Sakanishi N et al (1989) Two-dimensional echocardiographic evaluation of inferior vena cava, right ventricle, and left ventricle during positive-pressure ventilation with varying levels of positive end-expiratory pressure. Crit Care Med 17:205–210.  https://doi.org/10.1097/00003246-198903000-00001 PubMedCrossRefGoogle Scholar
  88. 88.
    Poelaert JIT, Reichert CLA, Koolen JJ et al (1992) Transesophageal echo-Doppler evaluation of the hemodynamic effects of positive-pressure ventilation after coronary artery surgery. J Cardiothorac Vasc Anesth 6:438–443.  https://doi.org/10.1016/1053-0770(92)90010-5 PubMedCrossRefGoogle Scholar
  89. 89.
    Kaul S, Tei C, Hopkins JM, Shah PM (1984) Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 107:526–531PubMedCrossRefGoogle Scholar
  90. 90.
    Saxena N, Rajagopalan N, Edelman K, López-Candales A (2006) Tricuspid annular systolic velocity: a useful measurement in determining right ventricular systolic function regardless of pulmonary artery pressures. Echocardiography 23:750–755.  https://doi.org/10.1111/j.1540-8175.2006.00305.x PubMedCrossRefGoogle Scholar
  91. 91.
    Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713.  https://doi.org/10.1016/j.echo.2010.05.010 PubMedCrossRefGoogle Scholar
  92. 92.
    Samad BA, Alam M, Jensen-Urstad K (2002) Prognostic impact of right ventricular involvement as assessed by tricuspid annular motion in patients with acute myocardial infarction. Am J Cardiol 90:778–781.  https://doi.org/10.1016/S0002-9149(02)02612-7 PubMedCrossRefGoogle Scholar
  93. 93.
    Gupta S, Khan F, Shapiro M et al (2008) The associations between tricuspid annular plane systolic excursion (TAPSE), ventricular dyssynchrony, and ventricular interaction in heart failure patients. Eur J Echocardiogr 9:766–771.  https://doi.org/10.1093/ejechocard/jen147 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kjaergaard J, Iversen KK, Akkan D et al (2009) Predictors of right ventricular function as measured by tricuspid annular plane systolic excursion in heart failure. Cardiovasc Ultrasound 7:51PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Damy T, Kallvikbacka-Bennett A, Goode K et al (2012) Prevalence of, associations with, and prognostic value of tricuspid annular plane systolic excursion (TAPSE) among out-patients referred for the evaluation of heart failure. J Card Fail 18:216–225PubMedCrossRefGoogle Scholar
  96. 96.
    Giusca S, Dambrauskaite V, Scheurwegs C et al (2010) Deformation imaging describes right ventricular function better than longitudinal displacement of the tricuspid ring. Heart 96:281–288.  https://doi.org/10.1136/hrt.2009.171728 PubMedCrossRefGoogle Scholar
  97. 97.
    Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39.  https://doi.org/10.1016/j.echo.2014.10.003 PubMedCrossRefGoogle Scholar
  98. 98.
    Meluzín J (2001) Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion. A new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur Heart J 22:340–348.  https://doi.org/10.1053/euhj.2000.2296 PubMedCrossRefGoogle Scholar
  99. 99.
    Dhutia NM, Zolgharni M, Willson K et al (2014) Guidance for accurate and consistent tissue Doppler velocity measurement: comparison of echocardiographic methods using a simple vendor-independent method for local validation. Eur Heart J Cardiovasc Imaging 15:817–827.  https://doi.org/10.1093/ehjci/jeu040 PubMedCrossRefGoogle Scholar
  100. 100.
    Pirat B, McCulloch ML, Zoghbi WA (2006) Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol 98:699–704.  https://doi.org/10.1016/j.amjcard.2006.03.056 PubMedCrossRefGoogle Scholar
  101. 101.
    Park SJ, Park JH, Lee HS et al (2015) Impaired RV global longitudinal strain is associated with poor long-term clinical outcomes in patients with acute inferior STEMI. JACC Cardiovasc Imaging 8:161–169.  https://doi.org/10.1016/j.jcmg.2014.10.011 PubMedCrossRefGoogle Scholar
  102. 102.
    Tei C, Ling LH, Hodge DO et al (1995) New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function–a study in normals and dilated cardiomyopathy. J Cardiol 26:357–366PubMedGoogle Scholar
  103. 103.
    Jardin F, Gueret P, Dubourg O et al (1985) Two-dimensional echocardiographic evaluation of right ventricular size and contractility in acute respiratory failure. Crit Care Med 13:952–956PubMedCrossRefGoogle Scholar
  104. 104.
    Jardin F, Dubourg O, Bourdarias JP (1997) Echocardiographic pattern of acute cor pulmonale. Chest 111:209–217PubMedCrossRefGoogle Scholar
  105. 105.
    Zornoff L, Skali H, Pfeffer MA et al (2002) Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J Am Coll Cardiol 39:1450–1455PubMedCrossRefGoogle Scholar
  106. 106.
    Anavekar NS, Skali H, Bourgoun M et al (2008) Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke following myocardial infarction (from the VALIANT ECHO study). Am J Cardiol 101:607–612.  https://doi.org/10.1016/j.amjcard.2007.09.115 PubMedCrossRefGoogle Scholar
  107. 107.
    Altman DG, Royston P (2006) The cost of dichotomising continuous variables. BMJ 332:1080.  https://doi.org/10.1136/bmj.332.7549.1080 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Prieto-Merino D, Smeeth L, Staa TPV, Roberts I (2013) Dangers of non-specific composite outcome measures in clinical trials. BMJ 347:f6782.  https://doi.org/10.1136/bmj.f6782 PubMedCrossRefGoogle Scholar
  109. 109.
    Teixeira-Pinto A, Mauri L (2011) Statistical analysis of noncommensurate multiple outcomes. Circulation 4:650–656.  https://doi.org/10.1161/circoutcomes.111.961581

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2018

Authors and Affiliations

  • Stephen J. Huang
    • 1
    Email author
  • Marek Nalos
    • 1
  • Louise Smith
    • 2
  • Arvind Rajamani
    • 1
  • Anthony S. McLean
    • 1
  1. 1.Department of Intensive Care Medicine, Nepean Hospital, Sydney Medical SchoolThe University of SydneySydneyAustralia
  2. 2.Cardiovascular Ultrasound Laboratory, Intensive Care UnitNepean HospitalSydneyAustralia

Personalised recommendations