Intensive Care Medicine

, Volume 44, Issue 6, pp 884–892 | Cite as

Transthoracic echocardiography and mortality in sepsis: analysis of the MIMIC-III database

  • Mengling Feng
  • Jakob I. McSparronEmail author
  • Dang Trung Kien
  • David J. Stone
  • David H. Roberts
  • Richard M. Schwartzstein
  • Antoine Vieillard-Baron
  • Leo Anthony Celi



While the use of transthoracic echocardiography (TTE) in the ICU is rapidly expanding, the contribution of TTE to altering patient outcomes among ICU patients with sepsis has not been examined. This study was designed to examine the association of TTE with 28-day mortality specifically in that population.

Methods and results

The MIMIC-III database was employed to identify patients with sepsis who had and had not received TTE. The statistical approaches utilized included multivariate regression, propensity score analysis, doubly robust estimation, the gradient boosted model, and an inverse probability-weighting model to ensure the robustness of our findings. Significant benefit in terms of 28-day mortality was observed among the TTE patients compared to the control (no TTE) group (odds ratio = 0.78, 95% CI 0.68–0.90, p < 0.001). The amount of fluid administered (2.5 vs. 2.1 L on day 1, p < 0.001), use of dobutamine (2% vs. 1%, p = 0.007), and the maximum dose of norepinephrine (1.4 vs. 1 mg/min, p = 0.001) were significantly higher for the TTE patients. Importantly, the TTE patients were weaned off vasopressors more quickly than those in the no TTE group (vasopressor-free days on day 28 of 21 vs. 19, p = 0.004).


In a general population of critically ill patients with sepsis, use of TTE is associated with an improvement in 28-day mortality.


Echocardiography Sepsis Value Critical care 


Compliance with ethical standards

Conflicts of interest

The authors declare that they have no competing interests.

Supplementary material

134_2018_5208_MOESM1_ESM.docx (3.3 mb)
Supplementary material 1 (DOCX 5813 kb)


  1. 1.
    Angus DC (2007) Caring for the critically ill patient: challenges and opportunities. JAMA 298:456–458. CrossRefPubMedGoogle Scholar
  2. 2.
    Singer M, Matthay MA (2011) Clinical review: thinking outside the box—an iconoclastic view of current practice. Crit Care 15:225. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Angus DC, Barnato AE, Linde-Zwirble WT et al (2004) Use of intensive care at the end of life in the United States: an epidemiologic study. Crit Care Med 32:638–643CrossRefPubMedGoogle Scholar
  4. 4.
    Society of Critical Care Medicine (2018) Critical care statistics. Accessed 8 Feb 2018
  5. 5.
    Moss M, Good VS, Gozal D et al (2016) An official Critical Care Societies Collaborative statement—burnout syndrome in critical care health-care professionals. Chest 150:17–26. CrossRefPubMedGoogle Scholar
  6. 6.
    Bossone E, DiGiovine B, Watts S et al (2002) Range and prevalence of cardiac abnormalities in patients hospitalized in a medical ICU. Chest 122:1370–1376CrossRefPubMedGoogle Scholar
  7. 7.
    Stanko LK, Jacobsohn E, Tam JW et al (2005) Transthoracic echocardiography: impact on diagnosis and management in tertiary care intensive care units. Anaesth Intensive Care 33:492–496PubMedGoogle Scholar
  8. 8.
    Tam JW, Nichol J, MacDiarmid AL et al (1999) What is the real clinical utility of echocardiography? A prospective observational study. J Am Soc Echocardiogr 12:689–697CrossRefPubMedGoogle Scholar
  9. 9.
    Orme RML, Oram MP, McKinstry CE (2009) Impact of echocardiography on patient management in the intensive care unit: an audit of district general hospital practice. Br J Anaesth 102:340–344. CrossRefPubMedGoogle Scholar
  10. 10.
    Matulevicius SA, Rohatgi A, Das SR et al (2013) Appropriate use and clinical impact of transthoracic echocardiography. JAMA Intern Med 173:1600–1607. CrossRefPubMedGoogle Scholar
  11. 11.
    Wijeysundera DN, Beattie WS, Karkouti K et al (2011) Association of echocardiography before major elective non-cardiac surgery with postoperative survival and length of hospital stay: population based cohort study. BMJ 342:d3695CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Papolos A, Narula J, Bavishi C et al (2016) US hospital use of echocardiography: insights from the nationwide inpatient sample. J Am Coll Cardiol 67:502–511. CrossRefPubMedGoogle Scholar
  13. 13.
    Andrus BW, Welch HG (2012) Medicare services provided by cardiologists in the United States: 1999–2008. Circ Cardiovasc Qual Outcomes 5:31–36. CrossRefPubMedGoogle Scholar
  14. 14.
    Douglas PS, Garcia MJ, Haines DE et al (2011) ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance American College of Chest Physicians. J Am Soc Echocardiogr 24:229–267. CrossRefPubMedGoogle Scholar
  15. 15.
    Ward RP, Krauss D, Mansour IN et al (2009) Comparison of the clinical application of the American College of Cardiology Foundation/American Society of Echocardiography appropriateness criteria for outpatient transthoracic echocardiography in academic and community practice settings. J Am Soc Echocardiogr 22:1375–1381. CrossRefPubMedGoogle Scholar
  16. 16.
    Cook CH, Praba AC, Beery PR, Martin LC (2002) Transthoracic echocardiography is not cost-effective in critically ill surgical patients. J Trauma 52:280–284PubMedGoogle Scholar
  17. 17.
    Sawchuk CWT, Wong DT, Kavanagh BP, Siu SC (2003) Transthoracic echocardiography does not improve prediction of outcome over APACHE II in medical-surgical intensive care. Can J Anaesth 50:305–310. CrossRefPubMedGoogle Scholar
  18. 18.
    STROBE Group (2016) STROBE statement: home. Accessed 12 Dec 2016
  19. 19.
    Angus DC, Linde-Zwirble WT, Lidicker J et al (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310CrossRefPubMedGoogle Scholar
  20. 20.
    Johnson AEW, Pollard TJ, Shen L et al (2016) MIMIC-III, a freely accessible critical care database. Sci Data 3:160035. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Johnson AE, Stone DJ, Celi LA, Pollard TJ (2018) The MIMIC code repository: enabling reproducibility in critical care research. J Am Med Inform Assoc 25:32–39. CrossRefPubMedGoogle Scholar
  22. 22.
    McCaffrey DF, Griffin BA, Almirall D et al (2013) A tutorial on propensity score estimation for multiple treatments using generalized boosted models. Stat Med 32:3388–3414. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Funk MJ, Westreich D, Wiesen C et al (2011) Doubly robust estimation of causal effects. Am J Epidemiol 173:761–767. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cole SR, Hernan MA (2008) Constructing inverse probability weights for marginal structural models. Am J Epidemiol 168:656–664. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Le Gall JR, Loirat P, Alperovitch A et al (1984) A simplified acute physiology score for ICU patients. Crit Care Med 12:975–977CrossRefPubMedGoogle Scholar
  26. 26.
    Vincent JL, Moreno R, Takala J et al (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710CrossRefPubMedGoogle Scholar
  27. 27.
    van Walraven C, Austin PC, Jennings A et al (2009) A modification of the Elixhauser comorbidity measures into a point system for hospital death using administrative data. Med Care 47:626–633. CrossRefPubMedGoogle Scholar
  28. 28.
    Coye MJ, Kell J (2006) How hospitals confront new technology. Health Aff (Millwood) 25:163–173CrossRefGoogle Scholar
  29. 29.
    Fisher ES, Welch HG (1999) Avoiding the unintended consequences of growth in medical care: how might more be worse? JAMA 281:446–453CrossRefPubMedGoogle Scholar
  30. 30.
    Wheeler AP, Bernard GR, Thompson BT et al (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354:2213–2224. CrossRefPubMedGoogle Scholar
  31. 31.
    Yu DT, Platt R, Lanken PN et al (2003) Relationship of pulmonary artery catheter use to mortality and resource utilization in patients with severe sepsis. Crit Care Med 31:2734–2741. CrossRefPubMedGoogle Scholar
  32. 32.
    Sandham JD, Hull RD, Brant RF et al (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348:5–14. CrossRefPubMedGoogle Scholar
  33. 33.
    Connors AF, Speroff T, Dawson NV et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. Support investigators. JAMA 276:889–897CrossRefPubMedGoogle Scholar
  34. 34.
    Matthay MA, Chatterjee K (1988) Bedside catheterization of the pulmonary artery: risks compared with benefits. Ann Intern Med 109:826–834CrossRefPubMedGoogle Scholar
  35. 35.
    Boden WE, O’Rourke RA, Teo KK et al (2007) Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 356:1503–1516. CrossRefPubMedGoogle Scholar
  36. 36.
    Mitka M (2006) CT angiography: clearer picture, fuzzier reception. JAMA 295:1989–1990. PubMedCrossRefGoogle Scholar
  37. 37.
    Ladapo JA, Horwitz JR, Weinstein MC et al (2009) Adoption and spread of new imaging technology: a case study. Health Aff (Millwood) 28:w1122–w1132. CrossRefGoogle Scholar
  38. 38.
    Ladapo JA, Jaffer FA, Hoffmann U et al (2009) Clinical outcomes and cost-effectiveness of coronary computed tomography angiography in the evaluation of patients with chest pain. J Am Coll Cardiol 54:2409–2422. CrossRefPubMedGoogle Scholar
  39. 39.
    Hsu DJ, Feng M, Kothari R et al (2015) The association between indwelling arterial catheters and mortality in hemodynamically stable patients with respiratory failure: a propensity score analysis. Chest 148:1470–1476. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ghassemi M, Celi L, Stone DJ (2015) State of the art review: the data revolution in critical care. Crit Care 19:118. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2018

Authors and Affiliations

  • Mengling Feng
    • 1
  • Jakob I. McSparron
    • 2
    Email author
  • Dang Trung Kien
    • 1
  • David J. Stone
    • 3
  • David H. Roberts
    • 4
  • Richard M. Schwartzstein
    • 4
  • Antoine Vieillard-Baron
    • 5
  • Leo Anthony Celi
    • 4
    • 6
  1. 1.Saw Swee Hock School of Public Health, National University Health SystemNational University of SingaporeSingaporeSingapore
  2. 2.Division of Pulmonary and Critical Care MedicineUniversity of MichiganAnn ArborUSA
  3. 3.Departments of Anesthesiology and NeurosurgeryUniversity of Virginia School of MedicineCharlottesvilleUSA
  4. 4.Division of Pulmonary, Critical Care and Sleep MedicineBeth Israel Deaconess Medical CenterBostonUSA
  5. 5.Hospital Ambroise Paré, Assistance Publique-Hôpitaux de ParisBoulogneFrance
  6. 6.Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations