Skip to main content
Log in

Diagnostic workup, etiologies and management of acute right ventricle failure

A state-of-the-art paper

  • Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Introduction

This is a state-of-the-art article of the diagnostic process, etiologies and management of acute right ventricular (RV) failure in critically ill patients. It is based on a large review of previously published articles in the field, as well as the expertise of the authors.

Results

The authors propose the ten key points and directions for future research in the field. RV failure (RVF) is frequent in the ICU, magnified by the frequent need for positive pressure ventilation. While no universal definition of RVF is accepted, we propose that RVF may be defined as a state in which the right ventricle is unable to meet the demands for blood flow without excessive use of the Frank–Starling mechanism (i.e. increase in stroke volume associated with increased preload). Both echocardiography and hemodynamic monitoring play a central role in the evaluation of RVF in the ICU. Management of RVF includes treatment of the causes, respiratory optimization and hemodynamic support. The administration of fluids is potentially deleterious and unlikely to lead to improvement in cardiac output in the majority of cases. Vasopressors are needed in the setting of shock to restore the systemic pressure and avoid RV ischemia; inotropic drug or inodilator therapies may also be needed. In the most severe cases, recent mechanical circulatory support devices are proposed to unload the RV and improve organ perfusion

Conclusion

RV function evaluation is key in the critically-ill patients for hemodynamic management, as fluid optimization, vasopressor strategy and respiratory support. RV failure may be diagnosed by the association of different devices and parameters, while echocardiography is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Image courtesy of Dr. Faraz Panthan

Fig. 5

Similar content being viewed by others

References

  1. Guyton AC (1955) Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev 35:123–129

    Article  PubMed  CAS  Google Scholar 

  2. Scharf S, Brown R, Saunders N, Green L (1980) Hemodynamic effects of positive pressure inflation. J Appl Physiol 49:124–131

    Article  PubMed  CAS  Google Scholar 

  3. Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2003) Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med 168:671–676

    Article  PubMed  Google Scholar 

  4. Mercat A, Diehl JL, Meyer G, Teboul JL, Sors H (1999) Hemodynamic effects of fluid loading in acute massive pulmonary embolism. Crit Care Med 27:540–544

    Article  PubMed  CAS  Google Scholar 

  5. Mahjoub Y, Pila C, Friggeri A, Zogheib E, Lobjoie E, Tinturier F, Galy C, Slama M, Dupont H (2009) Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med 37:2570–2575

    Article  PubMed  Google Scholar 

  6. Harjola VP, Mebazaa A, Celutkiene J, Bettex D, Bueno H, Chioncel O, Crespo-Leiro MG, Falk V, Filippatos G, Giggs S, Leite-Moreira A, Lassus J, Masip J, Mueller C, Mullens W, Naeije R, Nordegraaf AV, Parissos J, Riley JP, Ristic A, Rosano G, Rudiger A, Ruschitzka F, Seferovic P, SztrymfB Vieillard-Baron A, Yilmaz MB, Konstantinides S (2016) Contemporary management of acute right ventricular failure: a statement from the heart failure association and the working group on pulmonary circulation and right ventricular function of the European Society of Cardiology. Eur J Heart Fail 18:226–241

    Article  PubMed  Google Scholar 

  7. Jardin F, Dubourg O, Bourdarias JP (1997) Echocardiographic pattern of acute cor pulmonale. Chest 111:209–217

    Article  PubMed  CAS  Google Scholar 

  8. Vonk Noordegraaf A, Westerhof BE, Westerhof N (2017) The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol 69:236–243

    Article  PubMed  Google Scholar 

  9. Sagawa Maughan, Suga Sunagawa, Sagawa K, Maughan L, Suga H, Sunagawa K (1988) Cardiac contraction and the pressure–volume relationship. Oxford University Press, New York

    Google Scholar 

  10. Friedberg MK, Redington AN (2014) Right versus left ventricular failure: differences, similarities and interactions. Circulation 29:1033–1044

    Article  Google Scholar 

  11. Goldstein JA, Vlahakes GJ, Verrier ED, Schiller NB, Tyberg JV, Ports TA, Parmley WW, Chatterjee K (1982) The role of right ventricular systolic dysfunction and elevated intrapericardial pressure in the genesis of low output in experimental right ventricular infarction. Circulation 65:513–522

    Article  PubMed  CAS  Google Scholar 

  12. Cross CE (1962) Right ventricular pressure and coronary flow. Am J Physiol 202:12–16

    PubMed  CAS  Google Scholar 

  13. Naeije R, Badagliacca R (2017) The overloaded right ventricle and ventricular interdependence. Cardiovasc Res 113:1474–1485

    Article  PubMed  Google Scholar 

  14. Naeije R, Manes A (2014) The right ventricle in pulmonary arterial hypertension. Eur Respir Rev 23:476–487

    Article  PubMed  Google Scholar 

  15. Ventetuolo CE, Klinger JR (2014) Management of right ventricular failure in the intensive care unit. Ann Thorac Surg 11:811–822

    Google Scholar 

  16. Katira BH, Giesinger RE, Engelberts D, Zabini D, Kornecki A, Otulakowski G, Yoshida T, Kuebler WM, McNamara PJ, Connelly KA, Kavanagh BP (2017) Adverse heart-lung interactions in ventilator-induced lung injury. Am J Respir Crit Care Med 196:1411–1421

    Article  PubMed  Google Scholar 

  17. Bull TM, Clark B, McFann K, Moss M, National Institutes of Health/National Heart, Lung, and Blood institute ARDS Network (2010) Pulmonary vascular dysfunction is associated with poor outcomes in patients with acute lung injury. Am J Respir Crit Care Med 182:1123–1128

    Article  PubMed  PubMed Central  Google Scholar 

  18. Repessé X, Charron C, Vieillard-Baron A (2015) Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest 147:259–265

    Article  PubMed  Google Scholar 

  19. Price LC, McAuley DF, Marino PS, Finney SJ, Griffiths MS, Wort SJ (2012) Pathophysiology of pulmonary hypertension in acute lung injury. Am J Physiol Lung Cell Mol Physiol 302:L803–L815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mekontso-Dessap A, Boissier F, Charron C, Bégot E, Repessé X, Legras A, Brun-Buisson C, Vignon P, Vieillard-Baron A (2016) Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 42:862–870

    Article  PubMed  Google Scholar 

  21. Boissier F, Katsahian S, Razazi K, Thille AW, Roche-Campo F, Leon R, Vivier E, Brochard L, Vieillard-Baron A, Brun-Buisson C, Mekontso-Dessap A (2013) Prevalence and prognosis of cor pulmonale during protective ventilation for acute respiratory distress syndrome. Intensive Care Med 39:1725–1733

    Article  PubMed  Google Scholar 

  22. Kucher N, Rossi E, De Rosa M, Goldhaber SZ (2006) Massive pulmonary embolism. Circulation 113:577–582

    Article  PubMed  Google Scholar 

  23. Grifoni S, Olivotto I, Cecchini P, Pieralli F, Camaiti A, Santoro G, Conti A, Agnelli G, Berni G (2000) Short-term clinical outcome of patients with acute pulmonary embolism, normal blood pressure, and echocardiographic right ventricular dysfunction. Circulation 101:2817–2822

    Article  PubMed  CAS  Google Scholar 

  24. Mekontso-Dessap A, Deux JF, Abidi N, Lavenu-Bombled C, Melica G, Renaud B, Godeau B, Adnot S, Brochard L, Brun-Buisson C, Galacteros F, Rahmouni A, Habibi A, Maitre B (2011) Pulmonary artery thrombosis during acute chest syndrome in sickle cell disease. Am J Respir Crit Care Med 184:1022–1029

    Article  PubMed  Google Scholar 

  25. Cecchini J, Boissier F, Gibelin A, de Prost N, Razazi K, Carteau G, Galacteros F, Maitre B, Brun-Buisson C, Mekontiso Dessap A (2016) Pulmonary vascular dysfunction and cor pulmonale during acute respiratory distress syndrome in sicklers. Shock 46:358–364

    Article  PubMed  Google Scholar 

  26. Kinch JW, Ryan TJ (1994) Right ventricular infarction. N Engl J Med 330:1211–1217

    Article  PubMed  CAS  Google Scholar 

  27. Morrison DA, Adcock K, Collins CM, Goldman S, Caldwell JH, Schwarz MI (1987) Right ventricular dysfunction and the exercise limitation of chronic obstructive pulmonary disease. J Am Coll Cardiol 9:1219–1229

    Article  PubMed  CAS  Google Scholar 

  28. Mohammed SF, Hussain I, Abou Ezzedine OF, Takahama H, Kwon SH, Forfia P, Roger VL, Redfield MM (2014) Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation 130:2310–2320

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hoeper MM, Granton J (2011) Intensive Care unit management of patients with severe pulmonary hypertension and right heart failure. Am J Respir Crit Care Med 184:1114–1124

    Article  PubMed  CAS  Google Scholar 

  30. Sztrymf B, Souza R, Bertoletti L, Jaïs X, Sitbon O, Price LC, Simonneau G, Humbert M (2010) Prognostic factors of acute heart failure in patients with pulmonary arterial hypertension. Eur Respir J 35:1286–1293

    Article  PubMed  CAS  Google Scholar 

  31. Hamon M, Agostini D, Le Page O, Riddell JW, Hamon M (2008) Prognostic impact of right ventricular involvement in patients with acute myocardial infarction: meta-analysis. Crit Care Med 36:2023–2033

    Article  PubMed  Google Scholar 

  32. Bougouin W, Aissaoui N, Combes A, Deye N, Lamhaut L, Jost D, Maupain C, Beganton F, Bougle A, Karam N, Dumas F, Marijon E, Jouven X, Cariou A (2017) Post-cardiac arrest shock treated with veno-arterial extracorporeal membrane oxygenation: an observational study and propensity-score analysis. Resuscitation 110:126–132

    Article  PubMed  Google Scholar 

  33. Wardi G, Blanchard D, Dittrich T, Kaushal K, Sell R (2016) Right ventricle dysfunction and echocardiographic parameters in the post-cardiac arrest patients: a retrospective cohort study. Resuscitation 103:71–74

    Article  PubMed  Google Scholar 

  34. Haddad F, Couture P, Tousignant C, Denault A (2009) The right ventricle in cardiac surgery, a perioperative perspective: II. Pathophysiology, clinical importance, and management. Anesth Analg 108:422–433

    Article  PubMed  Google Scholar 

  35. Dávila-Román VG, Waggoner AD, Hopkins WE, Barzilai B (1995) Right ventricular dysfunction in low output syndrome after cardiac operations: assessment by transesophageal echocardiography. Ann Thorac Surg 60:1081–1086

    Article  PubMed  Google Scholar 

  36. Kaul TK, Fields BL (2000) Postoperative acute refractory right ventricular failure—incidence, pathogenesis, management and prognosis. Cardiovasc Surg 8:1–9

    Article  PubMed  CAS  Google Scholar 

  37. Sullivan TP, Moore JE, Klein AA, Jenkins DP, Williams LK, Roscoe A, Tsang W (2017) Evaluation of the clinical utility of transesophageal echocardiography and invasive monitoring to assess right ventricular function during and after pulmonary endarterectomy. J Cardiothorac Vasc Anesth. https://doi.org/10.1053/j.jvca.2017.09.026

    Article  PubMed  Google Scholar 

  38. Grant AD, Smedira NG, Starling RC, Marwick TH (2012) Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol 60:521–528

    Article  PubMed  Google Scholar 

  39. The EUROMACS (European Registry for Patients with Mechanical Circulatory Support) right-sided heart failure risk score (2017) Derivation and validation of a novel right-sided heart failure model after implantation of continuous flow left ventricular assist devices. Circulation 136. https://doi.org/10.1161/circulationaha.117.030543

  40. Grignola JC, Domingo E (2017) Acute right ventricular dysfunction in intensive care unit. Biomed Res Int 2017. https://doi.org/10.1155/2017/8217105

  41. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200

    Article  PubMed  Google Scholar 

  42. Krishnan S, Schmidt GA (2015) Acute right ventricular dysfunction: real-time management with echocardiography. Chest 147:835–846

    Article  PubMed  Google Scholar 

  43. Hoeper MM, Galié N, Murali S, Olschewski H, Rubenfire M, Robbins IM, Farber HW, McLaughlin V, Shapiro S, Pepke-Zaba J, Winkler J, Ewert R, Opotz C, Westerkamp V, Vachiery JL, Torbicki A, Behr J, Barst RJ (2002) Outcome after cardiopulmonary resuscitation in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 165:341–344

    Article  PubMed  Google Scholar 

  44. Tsapenko MV, Tsapenko AV, Comfere TB, Mour GK, Mankad SV, Gajic O (2008) Arterial pulmonary hypertension in noncardiac intensive care unit. Vasc Health Risk Manag 4:1043–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lang RM, Badano LP, Mor-Avi V, Afilo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzchel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1–39):e14

    Google Scholar 

  46. Levitov A, Frankel HL, Blaivas M, Kirkpatrick AW, Su E, Evans D, Summerfield DT, Slonim A, Breitkreutz R, Price S, McLaughlin M, Marik P, Elbarbary M (2016) Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients—part II. 44:1206–1227. Crit Care Med 44:1206–1227

    Article  PubMed  Google Scholar 

  47. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  48. Pinsky MR (2016) The right ventricle: interaction with the pulmonary circulation. Crit Care 20:1–9

    Google Scholar 

  49. Simon MA, Rajagopalan N, Mathier MA, Shroff SG, Pinsky MR, Lopez-Candales A (2009) Tissue Doppler imaging of right ventricular decompensation in pulmonary hypertension. Congest Heart Fail 15:271–276

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vieillard-Baron A, Slama M, Mayo P, Charron C, Amiel JB, Esterez C, Leleu F, Repessé X, Vignon P (2013) A pilot study on safety and clinical utility of a single-use 72-hour indwelling transesophageal echocardiography probe. Intensive Care Med 39:629–635

    Article  PubMed  Google Scholar 

  51. Fletcher N, Geisen M, Meeran H, Spray D, Cecconi M (2015) Initial clinical experience with a miniaturized transesophageal echocardiography probe in a cardiac intensive care unit. J Cardiothorac Vasc Anesth 29:582–587

    Article  PubMed  Google Scholar 

  52. Konstantinides SV, Torbicki A, Agnelli G et al (2014) 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 35:3033–3069

    Article  PubMed  CAS  Google Scholar 

  53. Lu MT, Cai T, Ersoy H, Whitmore AG, Levit NA, Goldhaber SZ, Rybicki FJ (2009) Comparison of ECG-gated versus non-gated CT ventricular measurements in thirty patients with acute pulmonary embolism. Int J Cardiovasc Imaging 25:101–107

    Article  PubMed  Google Scholar 

  54. Kang DK, Thilo C, Schoepf UJ, Barraza M, Nance JW, Bastarrika G, Abro JA, Ravenel JG, Costello P, Goldhaber SZ (2011) CT signs of right ventricular dysfunction: prognostic role in acute pulmonary embolism. JACC Cardiovasc Imaging 4:841–849

    Article  PubMed  Google Scholar 

  55. Spruijt OA, Bogaard H-J, Heijmans MW, Lely RJ, van de Veerdonk MC, de Man FS, Westerhof N, Vonk-Noordegraaf A (2015) Predicting pulmonary hypertension with standard computed tomography pulmonary angiography. Int J Cardiovasc Imaging 31:871–879

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dogan H, de Roos A, Geleijins J, Huisman MV, Kroft LJ (2015) The role of computed tomography in the diagnosis of acute and chronic pulmonary embolism. Diagn Interv Radiol 21:307–316

    Article  PubMed  PubMed Central  Google Scholar 

  57. Huis In’t Veld AE, Van Vliet AG, Spruijt OA, Handoko ML, Marcus JT, Vonk Noordegraaf A, Bogaard HJ (2016) CTA-derived left to right atrial size ratio distinguishes between pulmonary hypertension due to heart failure and idiopathic pulmonary arterial hypertension. Int J Cardiol 223:723–728

    Article  Google Scholar 

  58. Denault AY, Haddad F, Jacobsohn E, Deschamps A (2013) Perioperative right ventricular dysfunction. Curr Opin Anaesthesiol 26:71–81

    Article  PubMed  Google Scholar 

  59. Judge O, Ji F, Fleming N, Liu H (2015) Current use of the pulmonary artery catheter in cardiac surgery: a survey study. J Cardiothorac Vasc Anaesth 29:69–75

    Article  Google Scholar 

  60. Metkus TS, Tampakakis E, Mullin CJ, Houston BA, Kolb TM, Mathai SC, Damico R, Maron BA, Hassoun PM, Brower RG, Tedford RJ (2017) Pulmonary arterial compliance in acute respiratory distress syndrome: clinical determinants and association with outcome from the fluid and catheter treatment trial cohort. Crit Care Med 45:422–429

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pinsky MR (2017) Exploring the dark side of the moon: pulmonary vascular dysfunction in acute respiratory distress syndrome. Crit Care Med 45:559–561

    Article  PubMed  Google Scholar 

  62. Hrymak C, Strumpher J, Jacobsohn E (2017) Acute right ventricle failure in the intensive care unit: assessment and management. Can J Cardiol 33:61–71

    Article  PubMed  Google Scholar 

  63. Hoeper MM, Maier R, Tongers J, Niedermeyer J, Hohlfeld JM, Hamm M, Fabel H (1999) Determination of cardiac output by the Fick method, thermodilution, and acetylene rebreathing in pulmonary hypertension. Am J Respir Crit Care Med 160:535–541

    Article  PubMed  CAS  Google Scholar 

  64. Combes A, Berneau JB, Luyt CE, Trouillet JL (2004) Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med 30:1377–1383

    PubMed  Google Scholar 

  65. Foris V, Kovacs G, Tscherner M, Olschewski A, Olschewski H (2013) Biomarkers in pulmonary hypertension: what do we know? Chest 144:274–283

    Article  PubMed  CAS  Google Scholar 

  66. Lankeit M, Kempf T, Dellas C, Cuny M, Tapken H, Peter T, Olschewski M, Konstantinides S, Wollert KC (2008) Growth differentiation factor-15 for prognostic assessment of patients with acute pulmonary embolism. Am J Respir Crit Care Med 177:1018–1025

    Article  PubMed  CAS  Google Scholar 

  67. Lankeit M, Dellas C, Panzenböck A, Skoro-Sajer N, Bonderman D, Olschewski M, Schäfer K, Puis M, Konstantinides S, Lang IM (2008) Heart-type fatty acid-binding protein for risk assessment of chronic thromboembolic pulmonary hypertension. Eur Respir J 31:1024–1029

    Article  PubMed  CAS  Google Scholar 

  68. Puls M, Dellas C, Lankeit M, Olschewski M, Binder L, Geibel A, Reiner C, Schäfer K, Hasenfuss G, Konstantinides S (2007) Heart-type fatty acid-binding protein permits early risk stratification of pulmonary embolism. Eur Heart J 28:224–229

    Article  PubMed  CAS  Google Scholar 

  69. Huang SJ, Orde S (2013) From speckle tracking echocardiography to torsion: research tool today, clinical practice tomorrow. Curr Opin Crit Care 19:250–257

    Article  PubMed  Google Scholar 

  70. Fine NM, Chen L, Bastiansen PM, Frantz RP, Pellikka PA, Oh JK, Kane GC (2013) Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging 6:711–721

    Article  PubMed  Google Scholar 

  71. Orde SR, Pulido JN, Masaki M, Gillepsie S, Spoon JN, Kane GC, Oh JK (2014) Outcome prediction in sepsis: speckle tracking echocardiography based assessment of myocardial function. Crit Care 18:R149

    Article  PubMed  PubMed Central  Google Scholar 

  72. Amsallem M, Sweatt AJ, Aymani MC, Kuznetsova T, Selej M, Lu HQ, Mercier O, Fadel E, Schnittger I, McConnell MV, Rabinovitch M, Zamanian RT, Haddad F (2017) Right-heart end-systolic remodelling index strongly predicts outcomes in pulmonary arterial hypertension: comparison with validated models. Circ Cardiovasc Imaging 10:e005771. https://doi.org/10.1161/circimaging.116.005771

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shimada YJ, Shiota M, Siegel RJ, Shiota T (2010) Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging: a meta-analysis study. J Am Soc Echocardiogr 23:943–953

    Article  PubMed  Google Scholar 

  74. Smith BC, Dobson G, Dawson D, Charalampopoulos A, Grapsa J, Nihoyannopoulos P (2014) Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol 64:41–51

    Article  PubMed  Google Scholar 

  75. Laser KT, Horst J-P, Barth P, Kelter-Klöpping A, Haas NA, Burchert W, Kececioglu D, Köperich H (2014) Knowledge-based reconstruction of right ventricular volumes using real-time three-dimensional echocardiographic as well as cardiac magnetic resonance images: comparison with a cardiac magnetic resonance standard. J Am Soc Echocardiogr 27:1087–1097

    Article  PubMed  Google Scholar 

  76. Vonk Noordegraaf A, Haddad F, Bogaard HJ, Hassoun PM (2015) Noninvasive imaging in the assessment of the cardiopulmonary vascular unit. Circulation 131:899–913

    Article  PubMed  Google Scholar 

  77. Galea N, Carbone I, Cannata D, Cannavale G, Conti B, Galea R, Frustaci A, Catalano C, Francone M (2013) Right ventricular cardiovascular magnetic resonance imaging: normal anatomy and spectrum of pathological findings. Insights Imaging 4:213–223

    Article  PubMed  PubMed Central  Google Scholar 

  78. Spruijt OA, Di Pasqua MC, Bogaard HJ, van der Bruggen CE, Oosterveer F, Marcus JT, Vonk-Noordegraaf A, Handoko ML (2017) Serial assessment of right ventricular systolic function in patients with precapillary pulmonary hypertension using simple echocardiographic parameters: a comparison with cardiac magnetic resonance imaging. J Cardiol 69:182–188

    Article  PubMed  Google Scholar 

  79. Spruijt OA, Vissers L, Bogaard HJ, Hofman MB, Vonk-Noordegraaf A, Marcus JT (2016) Increased native T1-values at the interventricular insertion regions in precapillary pulmonary hypertension. Int J Cardiovasc Imaging 32:451–459

    Article  PubMed  Google Scholar 

  80. Masci PG, Francone M, Desmet W, Ganame J, Todiere G, Donato R, Siciliano V, Carbone I, Mangia M, Strata E, Catalano C, Lombardi M, Agati L, Janssens S, Bogaert J (2010) Right ventricular ischemic injury in patients with acute ST-segment elevation myocardial infarction: characterization with cardiovascular magnetic resonance. Circulation 122:1405–1412

    Article  PubMed  Google Scholar 

  81. Maury E, Arrivé L, Mayo PH (2017) Intensive Care Medicine in 2050: the future of medical imaging. Intensive Care Med 43:1132–1137

    Article  Google Scholar 

  82. D’Angelo T, Grigoratos C, Mazziotti S, Bratis K, Pathan F, Blandino A, Elen E, Puntmann VO, Nagel E (2017) High-throughput gadobutrol-enhanced CMR: a time and dose optimization study. J Cardiovasc Magn Reson 19:83

    Article  PubMed  PubMed Central  Google Scholar 

  83. Haddad F, Doyle R, Murphy D, Hunt S (2008) Right ventricular function in cardiovascular disease, part II. Pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117:1717–1731

    Article  PubMed  Google Scholar 

  84. Dalabih M, Rischard F, Mosier JM (2014) What’s new: the management of acute right ventricular decompensation of chronic pulmonary hypertension. Intensive Care Med 40:1930–1933

    Article  PubMed  Google Scholar 

  85. Dell’Italia LJ, Starling MR, Blumhardt R, Lasher JC, O’Rourke RA (1985) Comparative effects of volume loading, dobutamine, and nitroprusside in patients with predominant right ventricular infarction. Circulation 72:1327–1335

    Article  PubMed  Google Scholar 

  86. Belenkie I, Dani R, Smith ER, Tyberg JV (1989) Effects of volume loading during experimental acute pulmonary embolism. Circulation 80:178–188

    Article  PubMed  CAS  Google Scholar 

  87. Mitchell JR, Whitelaw WA, Sas R, Smith ER, Tyberg JV, Belenkie I (2005) RV filling modulates LV function by direct ventricular interaction during mechanical ventilation. Am J Physiol Heart Circ Physiol 289:H549–H557

    Article  PubMed  CAS  Google Scholar 

  88. Belenkie I, Dani R, Smith ER, Tyberg JV (1988) Ventricular interaction during experimental acute pulmonary embolism. Circulation 8:761–768

    Article  Google Scholar 

  89. Belenkie I, Sas R, Mitchell J, Smith ER, Tyberg JV (2004) Opening the pericardium during pulmonary artery constriction improves cardiac function. J Appl Physiol 96:917–922

    Article  PubMed  Google Scholar 

  90. Tyberg JV, Grant DA, Kingma I, Moore TD, Sun Y, Smith ER, Belenkie I (2000) Effects of positive intrathoracic pressure on pulmonary and systemic hemodynamics. Respir Physiol 119:171–179

    Article  PubMed  CAS  Google Scholar 

  91. Boulate D, Arthur Ataam J, Connolly AJ, Giraldeau G, Amsallem M, Decante B, Lamrani L, Fadel E, Dorfmuller P, Perros F, Haddad F, Mercier O (2017) Early development of right ventricular ischemic lesions in a novel large animal model of acute right heart failure in chronic thromboembolic pulmonary hypertension. J Cardiac Fail 23:876–886

    Article  Google Scholar 

  92. Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178

    Article  PubMed  Google Scholar 

  93. Monnet X, Marik PE, Teboul JL (2016) Prediction of fluid responsiveness: an update. Ann Intensive Care 6:111

    Article  PubMed  PubMed Central  Google Scholar 

  94. Vieillard-Baron A, Evrard B, Repessé X, Maizel J, Jacob C, Goudelin M, Charron C, Prat G, Slama M, Geri G, Vignon P (2018) Limited value of end-expiratory inferior vena cava diameter to predict fluid-responsiveness. Impact of intra-abdominal pressure. Intensive Care Med. https://doi.org/10.1007/s00134-018-5067-2

    Article  PubMed  Google Scholar 

  95. Vignon P, Repessé X, Bégot E, Léger J, Jacob C, Bouferrache K, Slama M, Prat G, Vieillard-Baron A (2017) Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients. Am J Respir Crit Care Med 195:1022–1032

    Article  PubMed  Google Scholar 

  96. Monnet X, Marik P, Teboul JL (2016) Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med 42:1935–1947

    Article  PubMed  Google Scholar 

  97. Ghignone M, Girling L, Prewitt RM (1984) Volume expansion versus norepinephrine in treatment of a low cardiac output complicating an acute increase in right ventricular afterload in dogs. Anesthesiology 60:132–135

    Article  PubMed  CAS  Google Scholar 

  98. Molloy WD, Lee KY, Girling L, Schick U, Prewitt RM (1984) Treatment of shock in a canine model of pulmonary embolism. Am Rev Respir Dis 130:870–874

    PubMed  CAS  Google Scholar 

  99. Jardin F, Genevray B, Brun-Ney D, Margairaz A (1985) Dobutamine: a hemodynamic evaluation in pulmonary embolism shock. Crit Care Med 13:1009–1012

    Article  PubMed  CAS  Google Scholar 

  100. Morelli A, Teboul JL, Maggiore SM, Vieillard-Baron A, Rocco M, Conti G, De Gaetano A, Picchini U, Orecchioni A, Carbone I, Tritapepe L, Pietropaoli P, Westphal M (2006) Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: a pilot study. Crit Care Med 34:2287–2293

    Article  PubMed  CAS  Google Scholar 

  101. Russ M, Prondzinsky R, Carter J et al (2009) Right ventricular function in myocardial infarction complicated by cardiogenic shock: improvement with levosimendan. Crit Care Med 37:3017–3023

    Article  PubMed  CAS  Google Scholar 

  102. Anderson MB, Goldstein J, Milano C, Morris LD, Kormos RL, Bhama J, Kapur NK, Bansal A, Garcia J, Baker JN, Silvestry S, Holman WL, Douglas PS, O’Neill W (2015) Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant 34:1549–1560

    Article  PubMed  Google Scholar 

  103. Atiemo AD, Conte JV, Heldman AW (2006) Resuscitation and recovery from acute right ventricular failure using a percutaneous right ventricular assist device. Catheter Cardiovasc Interv 68:78–82

    Article  PubMed  Google Scholar 

  104. Giesler GM, Gomez JS, Letsou G, Vooletich M, Smalling RW (2006) Initial report of percutaneous right ventricular assist for right ventricular shock secondary to right ventricular infarction. Catheter Cardiovasc Interv 68:263–266

    Article  PubMed  Google Scholar 

  105. Kapur NK, Paruchuri V, Korabathina R, Al-Mohammdi R, Mudd JO, Prutkin J, Esposito M, Shah A, Kiernan MS, Sech C, Pham DT, Konstam MA, Denofrio D (2011) Effect of a percutaneous mechanical circulatory support device for medically refractory right ventricular failure. J Heart Lung Transplant 30:1360–1367

    Article  PubMed  Google Scholar 

  106. Jardin F, Vieillard-Baron A (2007) Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med 33:444–447

    Article  PubMed  Google Scholar 

  107. Lejeune P, Brimioulle S, Leeman M, Hallemans R, Melot C, Naeije R (1990) Enhancement of hypoxic pulmonary vasoconstriction by metabolic acidosis in dogs. Anesthesiology 73:256–264

    Article  PubMed  CAS  Google Scholar 

  108. Morimont P, Guiot J, Desaive T, Tchana-Sato V, Janssen N, Cagina A, Hella D, Blaffart F, Defraigne JO, Lambermont B (2015) Veno-venous extracorporeal CO2 removal improves pulmonary hemodynamics in a porcine ARDS model. Acta Anaesthesiol Scand 59:448–456

    Article  PubMed  CAS  Google Scholar 

  109. Brimioulle S, Lejeune P, Naeije R (1996) Effects of hypoxic pulmonary vasoconstriction on pulmonary gas exchange. J Appl Physiol (1985) 81:1535–1543

    Article  CAS  Google Scholar 

  110. Writing group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome (ART) investigators, Cavalcanti AB et al (2017) Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 318:1335–1345

    Article  Google Scholar 

  111. Vieillard-Baron A, Charron C, Caille V, Belliard G, Page B, Jardin F (2007) Prone position unloads the right ventricle in severe ARDS. Chest 132:1440–1446

    Article  PubMed  Google Scholar 

  112. Afshari A, Brok J, Moller AM, Wetterslev J (2010) Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children: a systematic review with meta-analysis and trail sequential analysis. Cochrane Database Syst Rev 7:CD002787

    Google Scholar 

  113. George I, Xydas S, Topkara VK, Ferdinando C, Barnwell EC, Gableman L, Sladen RN, Naka Y, Oz MC (2006) Clinical indication for use and outcomes after inhaled nitric oxide therapy. Ann Thorac Surg 82:2161–2169

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Vieillard-Baron.

Ethics declarations

Conflicts of interest

AVB has received Grant from GSK for conducting clinical research and is membership of the scientific advisory board. RN has relationship with drug companies including AOPOrphan Pharmaceuticals, Actelion, Reata, Lung Biotechnology Corporation and United Therapeutics. In addition to being investigator in trials involving these companies, relationships include consultancy service, research Grants, and membership of scientific advisory board. FH declares no conflict of interest with regards to the content of this manuscript. HJB declares research Grants from Actelion, GSK, Therabell and speaker fees from Actelion, GSK. TMB declares investigator initiated Grant from Bayer Pharmaceuticals NF declares no conflict of interest. TL declares conflict of interest with Bayer (speaker bureau), Actelion (consulting), Gilled (scientific review committee) and Eli Lilly (research reagents). SM declares no conflict of interest with regards to the content of this manuscript. SO declares no conflict of interest. GS declares no conflict of interest with regards to the content of this manuscript. MRP declares no conflict of interest with regards to the content of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieillard-Baron, A., Naeije, R., Haddad, F. et al. Diagnostic workup, etiologies and management of acute right ventricle failure. Intensive Care Med 44, 774–790 (2018). https://doi.org/10.1007/s00134-018-5172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-018-5172-2

Keywords

Navigation