Advertisement

Intensive Care Medicine

, Volume 44, Issue 6, pp 897–899 | Cite as

What’s new in prognostication after cardiac arrest: microRNAs?

  • Yvan DevauxEmail author
  • Pascal Stammet
  • On behalf of the Cardiolinc™ network
What's New in Intensive Care

Introduction

Predicting whether a patient in an intensive care unit after a cardiac arrest (CA) will recover in good condition or will suffer irreversible and severe neurologic damage is challenging. Such prognostication would allow adapting healthcare to each individual, reduce the economic burden on the society, and inform patient relatives about the most plausible outcome at an early stage. It may also eventually serve as a solid basis for withdrawal of life-supporting therapies in futile cases. Current guidelines recommend the use of multimodal strategies for prediction of outcome. Yet, the risk of inaccurate prediction still remains, and complementary modalities may help to improve prediction accuracy.

Cardiac arrest management: improvements and disappointments

Over the last decade, the management of CA has dramatically changed. Many efforts have been put in pre-hospital care, including systematic lay person cardiopulmonary resuscitation (CPR) training, phone-assisted CPR, public...

Notes

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Adielsson A, Hollenberg J, Karlsson T, Lindqvist J, Lundin S, Silfverstolpe J, Svensson L, Herlitz J (2011) Increase in survival and bystander CPR in out-of-hospital shockable arrhythmia: bystander CPR and female gender are predictors of improved outcome. Experiences from Sweden in an 18-year perspective. Heart 97:1391–1396CrossRefPubMedGoogle Scholar
  2. 2.
    Wissenberg M, Lippert FK, Folke F, Weeke P, Hansen CM, Christensen EF, Jans H, Hansen PA, Lang-Jensen T, Olesen JB, Lindhardsen J, Fosbol EL, Nielsen SL, Gislason GH, Kober L, Torp-Pedersen C (2013) Association of national initiatives to improve cardiac arrest management with rates of bystander intervention and patient survival after out-of-hospital cardiac arrest. JAMA 310:1377–1384CrossRefPubMedGoogle Scholar
  3. 3.
    Sunde K, Pytte M, Jacobsen D, Mangschau A, Jensen LP, Smedsrud C, Draegni T, Steen PA (2007) Implementation of a standardised treatment protocol for post resuscitation care after out-of-hospital cardiac arrest. Resuscitation 73:29–39CrossRefPubMedGoogle Scholar
  4. 4.
    Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Aneman A, Al-Subaie N, Boesgaard S, Bro-Jeppesen J, Brunetti I, Bugge JF, Hingston CD, Juffermans NP, Koopmans M, Kober L, Langorgen J, Lilja G, Moller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H, Investigators TTMT (2013) Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med 369:2197–2206CrossRefPubMedGoogle Scholar
  5. 5.
    Kirkegaard H, Soreide E, de Haas I, Pettila V, Taccone FS, Arus U, Storm C, Hassager C, Nielsen JF, Sorensen CA, Ilkjaer S, Jeppesen AN, Grejs AM, Duez CHV, Hjort J, Larsen AI, Toome V, Tiainen M, Hastbacka J, Laitio T, Skrifvars MB (2017) Targeted temperature management for 48 vs 24 hours and neurologic outcome after out-of-hospital cardiac arrest: a randomized clinical trial. JAMA 318:341–350CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VR, Deakin C, Bottiger B, Friberg H, Sunde K, Sandroni C (2015) European resuscitation council guidelines for resuscitation 2015 section 5. Post resuscitation care. Resuscitation 95:202–222Google Scholar
  7. 7.
    Stammet P, Collignon O, Hassager C, Wise MP, Hovdenes J, Åneman A, Horn J, Devaux Y, Erlinge D, Kjaergaard J, Gasche Y, Wanscher M, Cronberg T, Friberg H, Wetterslev J, Pellis T, Kuiper M, Gilson G, Nielsen N (2015) Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C. J Am Coll Cardiol 65:2104–2114CrossRefPubMedGoogle Scholar
  8. 8.
    Stammet P, Dankiewicz J, Nielsen N, Fays F, Collignon O, Hassager C, Wanscher M, Unden J, Wetterslev J, Pellis T, Aneman A, Hovdenes J, Wise MP, Gilson G, Erlinge D, Horn J, Cronberg T, Kuiper M, Kjaergaard J, Gasche Y, Devaux Y, Friberg H, Target Temperature Management after Out-of-Hospital Cardiac Arrest trial i (2017) Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C. Crit Care 21:153CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rink C, Khanna S (2011) MicroRNA in ischemic stroke etiology and pathology. Physiol Genom 43:521–528CrossRefGoogle Scholar
  10. 10.
    Stammet P, Goretti E, Vausort M, Zhang L, Wagner DR, Devaux Y (2012) Circulating microRNAs after cardiac arrest. Crit Care Med 40:3209–3214CrossRefPubMedGoogle Scholar
  11. 11.
    Gilje P, Gidlof O, Rundgren M, Cronberg T, Al-Mashat M, Olde B, Friberg H, Erlinge D (2014) The brain-enriched microRNA miR-124 in plasma predicts neurological outcome after cardiac arrest. Crit Care 18:R40CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Devaux Y, Dankiewicz J, Salgado-Somoza A, Stammet P, Collignon O, Gilje P, Gidlof O, Zhang L, Vausort M, Hassager C, Wise MP, Kuiper M, Friberg H, Cronberg T, Erlinge D, Nielsen N, For Target Temperature Management After Cardiac Arrest Trial I (2016) Association of circulating microRNA-124-3p levels with outcomes after out-of-hospital cardiac arrest: a substudy of a randomized clinical trial. JAMA Cardiol 1:305–313CrossRefPubMedGoogle Scholar
  13. 13.
    Devaux Y, Salgado-Somoza A, Dankiewicz J, Boileau A, Stammet P, Schritz A, Zhang L, Vausort M, Gilje P, Erlinge D, Hassager C, Wise MP, Kuiper M, Friberg H, Nielsen N, Investigators TT-t (2017) Incremental value of circulating MiR-122-5p to predict outcome after out of hospital cardiac arrest. Theranostics 7:2555–2564CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lei P, Li Y, Chen X, Yang S, Zhang J (2009) Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res 1284:191–201CrossRefPubMedGoogle Scholar
  15. 15.
    Andersson P, Gidlof O, Braun OO, Gotberg M, van der Pals J, Olde B, Erlinge D (2012) Plasma levels of liver-specific miR-122 is massively increased in a porcine cardiogenic shock model and attenuated by hypothermia. Shock 37:234–238CrossRefPubMedGoogle Scholar
  16. 16.
    Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, Johnson JM, Sina JF, Fare TL, Sistare FD, Glaab WE (2009) Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55:1977–1983CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2017

Authors and Affiliations

  • Yvan Devaux
    • 1
    Email author
  • Pascal Stammet
    • 2
  • On behalf of the Cardiolinc™ network
  1. 1.Cardiovascular Research UnitLuxembourg Institute of HealthLuxembourgLuxembourg
  2. 2.Department of Anaesthesia and Intensive Care MedicineCentre HospitalierLuxembourgLuxembourg

Personalised recommendations