Peripherally inserted central catheters are associated with lower risk of bloodstream infection compared with central venous catheters in paediatric intensive care patients: a propensity-adjusted analysis



Central line-associated bloodstream infection (CLABSI) is an important cause of complications in paediatric intensive care units (PICUs). Peripherally inserted central catheters (PICCs) could be an alternative to central venous catheters (CVCs) and the effect of PICCs compared with CVCs on CLABSI prevention is unknown in PICUs. Therefore, we aimed to evaluate whether PICCs were associated with a protective effect for CLABSI when compared to CVCs in critically ill children.


We have carried out a retrospective multicentre study in four PICUs in São Paulo, Brazil. We included patients aged 0–14 years, who needed a CVC or PICC during a PICU stay from January 2013 to December 2015. Our primary endpoint was CLABSI up to 30 days after catheter placement. We defined CLABSI based on the Center for Disease Control and Prevention’s National Healthcare Safety Networks (NHSN) 2015 surveillance definitions. To account for potential confounders, we used propensity scores with inverse probability weighting.


A total of 1660 devices (922 PICCs and 738 CVCs) in 1255 children were included. The overall CLABSI incidence was 2.28 (95% CI 1.70–3.07)/1000 catheter-days. After covariate adjustment using propensity scores, CVCs were associated with higher risk of CLABSI (adjHR 2.20, 95% CI 1.05–4.61; p = 0.037) compared with PICCs. In a sensitivity analysis, CVCs remained associated with higher risk of CLABSI (adjHR 2.18, 95% CI 1.02–4.64; p = 0.044) after adding place of insertion and use of parenteral nutrition to the model as a time-dependent variable.


PICC should be an alternative to CVC in the paediatric intensive care setting for CLABSI prevention.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Edwards JD, Herzig CT, Liu H et al (2015) Central line–associated blood stream infections in pediatric intensive care units: longitudinal trends and compliance with bundle strategies. Am J Infect Control 43:489–493. doi:10.1016/j.ajic.2015.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Randolph AG (2016) Pragmatic trials in critically ill children are CATCHing on. Lancet 387:1697–1698. doi:10.1016/S0140-6736(16)00566-3

    Article  PubMed  Google Scholar 

  3. 3.

    Nowak JE, Brilli RJ, Lake MR et al (2010) Reducing catheter-associated bloodstream infections in the pediatric intensive care unit: business case for quality improvement. Pediatr Crit Care Med 11:579–587. doi:10.1097/PCC.0b013e3181d90569

    Article  PubMed  Google Scholar 

  4. 4.

    Blot SI, Depuydt P, Annemans L et al (2005) Clinical and economic outcomes in critically ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis 41:1591–1598

    Article  PubMed  Google Scholar 

  5. 5.

    Gibson C, Connolly BL, Moineddin R et al (2013) Peripherally inserted central catheters: use at a tertiary care pediatric center. J Vasc Interv Radiol 24:1323–1331. doi:10.1016/j.jvir.2013.04.010

    Article  PubMed  Google Scholar 

  6. 6.

    Maki DG, Kluger DM, Crnich CJ (2006) The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc 81:1159–1171. doi:10.4065/81.9.1159

    Article  PubMed  Google Scholar 

  7. 7.

    Safdar N, Maki DG (2005) Risk of catheter-related bloodstream infection with peripherally inserted central venous catheters used in hospitalized patients. Chest 128:489–495. doi:10.1378/chest.128.2.489

    Article  PubMed  Google Scholar 

  8. 8.

    Chopra V, O’Horo JC, Rogers MAM et al (2013) The risk of bloodstream infection associated with peripherally inserted central catheters compared with central venous catheters in adults: a systematic review and meta-analysis. Infect Control Hosp Epidemiol 34:908–918. doi:10.1086/671737

    Article  PubMed  Google Scholar 

  9. 9.

    Soares M, Bozza FA, Angus DC et al (2015) Organizational characteristics, outcomes, and resource use in 78 Brazilian intensive care units: the ORCHESTRA study. Intensive Care Med 41:2149–2160. doi:10.1007/s00134-015-4076-7

    Article  PubMed  Google Scholar 

  10. 10.

    Ranzani OT, Simpson ES, Augusto TB et al (2014) Evaluation of a minimal sedation protocol using ICU sedative consumption as a monitoring tool: a quality improvement multicenter project. Crit Care 18:580. doi:10.1186/s13054-014-0580-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    How-to Guide: Prevent Central Line-Associated Bloodstream Infections. Cambridge, MA: Institute for Healthcare Improvement; 2012. (Available at

  12. 12.

    Bloodstream Infection Event (Central Line-Associated Bloodstream Infection and non-central line-associated Bloodstream Infection)—Device associated module. Updated January 2017.

  13. 13.

    Austin PC (2014) The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments: propensity scores and survival analysis. Stat Med 33:1242–1258. doi:10.1002/sim.5984

    Article  PubMed  Google Scholar 

  14. 14.

    Truche A-S, Darmon M, OUTCOMEREA Study Group et al (2016) Continuous renal replacement therapy versus intermittent hemodialysis in intensive care patients: impact on mortality and renal recovery. Intensive Care Med 42:1408–1417. doi:10.1007/s00134-016-4404-6

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Pages J, Hazera P, 3SITES Study Group et al (2016) Comparison of alcoholic chlorhexidine and povidone–iodine cutaneous antiseptics for the prevention of central venous catheter-related infection: a cohort and quasi-experimental multicenter study. Intensive Care Med 42:1418–1426. doi:10.1007/s00134-016-4406-4

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Wyss R, Ellis AR, Brookhart MA et al (2014) The role of prediction modeling in propensity score estimation: an evaluation of logistic regression, bCART, and the covariate-balancing propensity score. Am J Epidemiol 180:645–655. doi:10.1093/aje/kwu181

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Imai K, Ratkovic M (2014) Covariate balancing propensity score. J R Stat Soc B 76:243–263. doi:10.1111/rssb.12027

    Article  Google Scholar 

  18. 18.

    Brookhart MA (2006) Variable selection for propensity score models. Am J Epidemiol 163:1149–1156. doi:10.1093/aje/kwj149

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Arpino B, Cannas M (2016) Propensity score matching with clustered data. An application to the estimation of the impact of caesarean section on the Apgar score: propensity score matching with clustered data. An application to the estimation of the impact of caesarean section on the Apgar score. Stat Med 35:2074–2091. doi:10.1002/sim.6880

    Article  PubMed  Google Scholar 

  20. 20.

    Cole SR, Hernán MA (2004) Adjusted survival curves with inverse probability weights. Comput Methods Progr Biomed 75:45–49. doi:10.1016/j.cmpb.2003.10.004

    Article  Google Scholar 

  21. 21.

    Parienti J-J, Mongardon N, Mégarbane B et al (2015) Intravascular complications of central venous catheterization by insertion site. N Engl J Med 373:1220–1229. doi:10.1056/NEJMoa1500964

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Dudeck MA, Edwards JR, Allen-Bridson K et al (2015) National healthcare safety network report, data summary for 2013, device-associated module. Am J Infect Control 43:206–221. doi:10.1016/j.ajic.2014.11.014

    Article  PubMed  Google Scholar 

  23. 23.

    Fontela PS, Platt RW, Rocher I et al (2012) Epidemiology of central line–associated bloodstream infections in Quebec intensive care units: a 6-year review. Am J Infect Control 40:221–226. doi:10.1016/j.ajic.2011.04.008

    Article  PubMed  Google Scholar 

  24. 24.

    Miller MR, Niedner MF, Huskins WC et al (2011) Reducing PICU central line-associated bloodstream infections: 3-year results. Pediatrics 128:e1077–e1083. doi:10.1542/peds.2010-3675

    Article  PubMed  Google Scholar 

  25. 25.

    Patrick SW, Kawai AT, Kleinman K et al (2014) Health care-associated infections among critically ill children in the US, 2007–2012. Pediatrics 134:705–712

    Article  PubMed  Google Scholar 

  26. 26.

    Rosenthal VD, Al-Abdely HM, El-Kholy AA et al (2016) International nosocomial infection control consortium report, data summary of 50 countries for 2010–2015: device-associated module. Am J Infect Control 44:1495–1504. doi:10.1016/j.ajic.2016.08.007

    Article  PubMed  Google Scholar 

  27. 27.

    Leblebicioglu H, Erben N, Rosenthal VD et al (2014) International Nosocomial Infection Control Consortium (INICC) national report on device-associated infection rates in 19 cities of Turkey, data summary for 2003–2012. Ann Clin Microbiol Antimicrob 13:1

    Article  Google Scholar 

  28. 28.

    Rosenthal VD (2009) Central line-associated bloodstream infections in limited-resource countries: a review of the literature. Clin Infect Dis 49:1899–1907. doi:10.1086/648439

    Article  PubMed  Google Scholar 

  29. 29.

    Marschall J, Mermel LA, Fakih M et al (2014) Strategies to prevent central line-associated bloodstream infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35:753–771. doi:10.1086/676533

    Article  PubMed  Google Scholar 

  30. 30.

    O’Grady NP, Alexander M, Dellinger EP et al (2002) Guidelines for the prevention of intravascular catheter-related infections. Pediatrics 110:e51. doi:10.1542/peds.110.5.e51

    Article  PubMed  Google Scholar 

  31. 31.

    Advani S, Reich NG, Sengupta A et al (2011) Central line-associated bloodstream infection in hospitalized children with peripherally inserted central venous catheters: extending risk analyses outside the intensive care unit. Clin Infect Dis 52:1108–1115. doi:10.1093/cid/cir145

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Jumani K, Advani S, Reich NG et al (2013) Risk factors for peripherally inserted central venous catheter complications in children. JAMA Pediatr 167:429. doi:10.1001/jamapediatrics.2013.775

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Gilbert RE, Mok Q, Dwan K et al (2016) Impregnated central venous catheters for prevention of bloodstream infection in children (the CATCH trial): a randomised controlled trial. Lancet 387:1732–1742

    Article  PubMed  Google Scholar 

  34. 34.

    Goes-Silva E, Abreu TF, Frota ACC et al (2009) Use of peripherally inserted central catheters to prevent catheter-associated bloodstream infection in children. Infect Control Hosp Epidemiol 30:1024–1026. doi:10.1086/606040

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Al Raiy B, Fakih MG, Bryan-Nomides N et al (2010) Peripherally inserted central venous catheters in the acute care setting: a safe alternative to high-risk short-term central venous catheters. Am J Infect Control 38:149–153. doi:10.1016/j.ajic.2009.06.008

    Article  PubMed  Google Scholar 

  36. 36.

    Hord JD, Lawlor J, Werner E et al (2016) Central line associated blood stream infections in pediatric hematology/oncology patients with different types of central lines: cLABSI in patients with different central line types. Pediatr Blood Cancer 63:1603–1607. doi:10.1002/pbc.26053

    Article  PubMed  Google Scholar 

  37. 37.

    Safdar N, Maki DG (2004) The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intensive Care Med 30:62–67. doi:10.1007/s00134-003-2045-z

    Article  PubMed  Google Scholar 

  38. 38.

    Chopra V, Ratz D, Kuhn L et al (2014) PICC-associated bloodstream infections: prevalence, patterns, and predictors. Am J Med 127:319–328. doi:10.1016/j.amjmed.2014.01.001

    Article  PubMed  Google Scholar 

  39. 39.

    Carter JH, Langley JM, Kuhle S, Kirkland S (2016) Risk factors for central venous catheter-associated bloodstream infection in pediatric patients: a cohort study. Infect Control Hosp Epidemiol 37:939–945. doi:10.1017/ice.2016.83

    Article  PubMed  Google Scholar 

  40. 40.

    Touré A, Chambrier C, Vanhems P et al (2013) Propensity score analysis confirms the independent effect of parenteral nutrition on the risk of central venous catheter-related bloodstream infection in oncological patients. Clin Nutr 32:1050–1054. doi:10.1016/j.clnu.2012.12.006

    Article  PubMed  Google Scholar 

Download references


We thank all the staff working at the participating ICUs. We also thank the Americas Research and Education Institute, São Paulo, Brazil. This research was supported by funding from the Americas Research and Education Institute, São Paulo, Brazil. The sponsor had no role in the acquisition, analysis or interpretation of the data.

Author information



Corresponding author

Correspondence to Ricardo Silveira Yamaguchi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Take-home message: PICCs could be used as an alternative to CVCs in Paediatric ICUs. We observed that in four PICUs from Brazil, PICCs were commonly used instead of CVCs.

We showed for the first time in a multicentre study that PICCs were associated with a protective effect in CLABSI prevention in paediatric critical care setting.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 391 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, R.S., Noritomi, D.T., Degaspare, N.V. et al. Peripherally inserted central catheters are associated with lower risk of bloodstream infection compared with central venous catheters in paediatric intensive care patients: a propensity-adjusted analysis. Intensive Care Med 43, 1097–1104 (2017).

Download citation


  • Peripherally inserted central catheter
  • Central venous line
  • Infection
  • Paediatric intensive care unit