Intensive Care Medicine

, Volume 42, Issue 8, pp 1206–1213 | Cite as

Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS

  • Elias Baedorf KassisEmail author
  • Stephen H. Loring
  • Daniel Talmor



The driving pressure of the respiratory system has been shown to strongly correlate with mortality in a recent large retrospective ARDSnet study. Respiratory system driving pressure [plateau pressure−positive end-expiratory pressure (PEEP)] does not account for variable chest wall compliance. Esophageal manometry can be utilized to determine transpulmonary driving pressure. We have examined the relationships between respiratory system and transpulmonary driving pressure, pulmonary mechanics and 28-day mortality.


Fifty-six patients from a previous study were analyzed to compare PEEP titration to maintain positive transpulmonary end-expiratory pressure to a control protocol. Respiratory system and transpulmonary driving pressures and pulmonary mechanics were examined at baseline, 5 min and 24 h. Analysis of variance and linear regression were used to compare 28 day survivors versus non-survivors and the intervention group versus the control group, respectively.


At baseline and 5 min there was no difference in respiratory system or transpulmonary driving pressure. By 24 h, survivors had lower respiratory system and transpulmonary driving pressures. Similarly, by 24 h the intervention group had lower transpulmonary driving pressure. This decrease was explained by improved elastance and increased PEEP.


The results suggest that utilizing PEEP titration to target positive transpulmonary pressure via esophageal manometry causes both improved elastance and driving pressures. Treatment strategies leading to decreased respiratory system and transpulmonary driving pressure at 24 h may be associated with improved 28 day mortality. Studies to clarify the role of respiratory system and transpulmonary driving pressures as a prognosticator and bedside ventilator target are warranted.


ARDS Driving pressure Esophageal manometry Transpulmonary driving pressure Respiratory system driving pressure Mortality 



The authors acknowledge Robert Gerber for assistance in making the figures and Victor Novak for assistance with statistical analysis. There was no separate funding source for this study, however the original EPVent study was funded under Stephen Lorings RO1 Grant HL-52586.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

134_2016_4403_MOESM1_ESM.tif (507 kb)
Electronic Supplemental Material. a Relationship between DPRS and DPL at any time point. b Relationship between the change in DPRS (baseline to 5 min and baseline to 24 h) and change in DPL in individual subjects. Data were analyzed using locally weighted scatterplot smoothing (LOWESS) (TIFF 507 kb)


  1. 1.
    Bernard GR, Artigas A (2016) The definition of ARDS revisited: 20 years later. Intensive Care Med 42:640–642. doi: 10.1007/s00134-016-4281-z CrossRefPubMedGoogle Scholar
  2. 2.
    Bernard GR, Artigas A, Brigham KL (1994) The American–European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824. doi: 10.1164/ajrccm.149.3.7509706 CrossRefPubMedGoogle Scholar
  3. 3.
    Wang CY, Calfee CS, Paul DW et al (2014) One-year mortality and predictors of death among hospital survivors of acute respiratory distress syndrome. Intensive Care Med 40:388–396. doi: 10.1007/s00134-013-3186-3 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Villar J, Blanco J, Kacmarek RM (2016) Current incidence and outcome of the acute respiratory distress syndrome. Curr Opin Crit Care 22(1):1–6. doi: 10.1097/MCC.0000000000000266 PubMedGoogle Scholar
  5. 5.
    Anonymous (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med 342:1301–1308. doi: 10.1056/NEJM200005043421801 CrossRefGoogle Scholar
  6. 6.
    Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354. doi: 10.1056/NEJM199802053380602 CrossRefPubMedGoogle Scholar
  7. 7.
    Briel M, Meade M, Mercat A et al (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303:865–873. doi: 10.1001/jama.2010.218 CrossRefPubMedGoogle Scholar
  8. 8.
    Villar J, Kacmarek RM, Perez-Mendez L, Aguirre-Jaime A (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 34:1311–1318. doi: 10.1097/01.CCM.0000215598.84885.01 CrossRefPubMedGoogle Scholar
  9. 9.
    Gattinoni L, Quintel M (2016) Is mechanical ventilation a cure for ARDS? Intensive Care Med 42:916–917. doi: 10.1007/s00134-016-4266-y CrossRefPubMedGoogle Scholar
  10. 10.
    Dreyfuss D, Hubmayr R (2016) What the concept of VILI has taught us about ARDS management. Intensive Care Med 42:811–813. doi: 10.1007/s00134-016-4287-6 CrossRefPubMedGoogle Scholar
  11. 11.
    Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest J 116:9S–15SCrossRefGoogle Scholar
  12. 12.
    Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369:2126–2136. doi: 10.1056/NEJMra1208707 CrossRefPubMedGoogle Scholar
  13. 13.
    Amato MB, Meade MO, Slutsky AS et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372:747–755. doi: 10.1056/NEJMsa1410639 CrossRefPubMedGoogle Scholar
  14. 14.
    Loring SH, Malhotra A (2015) Driving pressure and respiratory mechanics in ARDS. N Engl J Med 372:776–777. doi: 10.1056/NEJMe1414218 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Talmor D, Sarge T, Malhotra A et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359:2095–2104. doi: 10.1056/NEJMoa0708638 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Talmor D, Sarge T, O’Donnell CR, Ritz R, Malhotra A, Lisbon A, Loring SH (2006) Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med 34:1389–1394. doi: 10.1097/01.CCM.0000215515.49001.A2 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Akoumianaki E, Maggiore SM, Valenza F et al (2014) The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med 189:520–531. doi: 10.1164/rccm.201312-2193CI CrossRefPubMedGoogle Scholar
  18. 18.
    Beitler JR, Goligher EC, Schmidt M et al (2016) Personalized medicine for ARDS: the 2035 research agenda. Intensive Care Med 42:756–767. doi: 10.1007/s00134-016-4331-6 CrossRefPubMedGoogle Scholar
  19. 19.
    Brower RG, Lanken PN, MacIntyre N et al (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336. doi: 10.1056/NEJMoa032193 CrossRefPubMedGoogle Scholar
  20. 20.
    Grasso S, Fanelli V, Cafarelli A, Anaclerio R, Amabile M, Ancona G, Fiore T (2005) Effects of high versus low positive end-expiratory pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 171:1002–1008 (200407-940OC [pii])CrossRefPubMedGoogle Scholar
  21. 21.
    Meade MO, Cook DJ, Guyatt GH et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645. doi: 10.1001/jama.299.6.637 CrossRefPubMedGoogle Scholar
  22. 22.
    Mercat A, Richard JC, Vielle B et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:646–655. doi: 10.1001/jama.299.6.646 CrossRefPubMedGoogle Scholar
  23. 23.
    Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736. doi: 10.1164/ajrccm/136.3.730 CrossRefPubMedGoogle Scholar
  24. 24.
    Gattinoni L, Pesenti A (2005) The concept of “baby lung”. Intensive Care Med 31:776–784. doi: 10.1007/s00134-005-2627-z CrossRefPubMedGoogle Scholar
  25. 25.
    Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L (2016) The “baby lung” became an adult. Intensive Care Med 42:663–673. doi: 10.1007/s00134-015-4200-8 CrossRefPubMedGoogle Scholar
  26. 26.
    Luecke T, Pelosi P (2005) Clinical review: positive end-expiratory pressure and cardiac output. Crit Care 9:607–621 (cc3877 [pii])CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289. doi: 10.1056/NEJM197502062920604 CrossRefPubMedGoogle Scholar
  28. 28.
    Gattinoni L, Caironi P, Cressoni M et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786CrossRefPubMedGoogle Scholar
  29. 29.
    Eisner MD, Thompson BT, Schoenfeld D, Anzueto A, Matthay MA, Network Acute Respiratory Distress Syndrome (2002) Airway pressures and early barotrauma in patients with acute lung injury and acute respiratory distress syndrome. Am J Respir Crit Care Med 165:978–982. doi: 10.1164/ajrccm.165.7.2109059 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2016

Authors and Affiliations

  • Elias Baedorf Kassis
    • 1
    Email author
  • Stephen H. Loring
    • 2
  • Daniel Talmor
    • 2
  1. 1.Division of Pulmonary and Critical CareBeth Israel Deaconess Medical Center and Massachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of Anesthesia, Critical Care and Pain MedicineBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA

Personalised recommendations