Advertisement

Intensive Care Medicine

, Volume 42, Issue 5, pp 756–767 | Cite as

Personalized medicine for ARDS: the 2035 research agenda

  • Jeremy R. BeitlerEmail author
  • Ewan C. Goligher
  • Matthieu Schmidt
  • Peter M. Spieth
  • Alberto Zanella
  • Ignacio Martin-Loeches
  • Carolyn S. Calfee
  • Alexandre B. Cavalcanti
  • The ARDSne(x)t Investigators
Conference Reports and Expert Panel

Abstract

In the last 20 years, survival among patients with acute respiratory distress syndrome (ARDS) has increased substantially with advances in lung-protective ventilation and resuscitation. Building on this success, personalizing mechanical ventilation to patient-specific physiology for enhanced lung protection will be a top research priority for the years ahead. However, the ARDS research agenda must be broader in scope. Further understanding of the heterogeneous biology, from molecular to mechanical, underlying early ARDS pathogenesis is essential to inform therapeutic discovery and tailor treatment and prevention strategies to the individual patient. The ARDSne(x)t research agenda for the next 20 years calls for bringing personalized medicine to ARDS, asking simultaneously both whether a treatment affords clinically meaningful benefit and for whom. This expanded scope necessitates standard acquisition of highly granular biological, physiological, and clinical data across studies to identify biologically distinct subgroups that may respond differently to a given intervention. Clinical trials will need to consider enrichment strategies and incorporate long-term functional outcomes. Tremendous investment in research infrastructure and global collaboration will be vital to fulfilling this agenda.

Keywords

Acute respiratory distress syndrome Acute lung injury Ventilator-induced lung injury Positive-pressure respiration Respiratory mechanics Clinical trials 

Notes

Compliance with ethical standards

Conflicts of interest

Drs. Beitler, Goligher, Zanella, Martin-Loeches, and Cavalcanti report no potential conflicts of interest. Dr. Schmidt received honoraria for lectures from Maquet. Dr. Spieth received honoraria for lectures from Baxter and Maquet. Dr. Calfee received grants from and consulted for GlaxoSmithKline, and had travel paid by Boehringer Ingelheim.

References

  1. 1.
    Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308. doi: 10.1056/NEJM200005043421801 CrossRefGoogle Scholar
  2. 2.
    Definition Task Force ARDS, Ranieri VM, Rubenfeld GD et al (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307:2526–2533. doi: 10.1001/jama.2012.5669 Google Scholar
  3. 3.
    Thille AW, Esteban A, Fernández-Segoviano P et al (2013) Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med 187:761–767. doi: 10.1164/rccm.201211-1981OC CrossRefPubMedGoogle Scholar
  4. 4.
    Villar J, Pérez-Méndez L, López J et al (2007) An early PEEP/FIO2 trial identifies different degrees of lung injury in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 176:795–804. doi: 10.1164/rccm.200610-1534OC CrossRefPubMedGoogle Scholar
  5. 5.
    Villar J, Pérez-Méndez L, Blanco J et al (2013) A universal definition of ARDS: the PaO2/FiO2 ratio under a standard ventilatory setting—a prospective, multicenter validation study. Intensive Care Med 39:583–592. doi: 10.1007/s00134-012-2803-x CrossRefPubMedGoogle Scholar
  6. 6.
    Rubenfeld GD, Caldwell E, Granton J et al (1999) Interobserver variability in applying a radiographic definition for ARDS. Chest 116:1347–1353CrossRefPubMedGoogle Scholar
  7. 7.
    Baldi G, Gargani L, Abramo A et al (2013) Lung water assessment by lung ultrasonography in intensive care: a pilot study. Intensive Care Med 39:74–84. doi: 10.1007/s00134-012-2694-x CrossRefPubMedGoogle Scholar
  8. 8.
    Costa E, Borges JB, Melo A et al (2009) Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med 35:1132–1137. doi: 10.1007/s00134-009-1447-y CrossRefPubMedGoogle Scholar
  9. 9.
    Victorino JA, Borges JB, Okamoto VN et al (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800. doi: 10.1164/rccm.200301-133OC CrossRefPubMedGoogle Scholar
  10. 10.
    Berkowitz DM, Danai PA, Eaton S et al (2008) Accurate characterization of extravascular lung water in acute respiratory distress syndrome. Crit Care Med 36:1803–1809. doi: 10.1097/CCM.0b013e3181743eeb CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Calfee CS, Delucchi K, Parsons PE et al (2014) Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2:611–620. doi: 10.1016/S2213-2600(14)70097-9 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Calfee CS, Janz DR, Bernard GR et al (2015) Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. Chest 147:1539–1548. doi: 10.1378/chest.14-2454 CrossRefPubMedGoogle Scholar
  13. 13.
    Vincent JL, Santacruz C (2016) Do we need ARDS? Intensive Care Med 42:282–283. doi: 10.1007/s00134-015-4120-7 CrossRefPubMedGoogle Scholar
  14. 14.
    Li G, Malinchoc M, Cartin-Ceba R et al (2011) Eight-year trend of acute respiratory distress syndrome: a population-based study in Olmsted County, Minnesota. Am J Respir Crit Care Med 183:59–66. doi: 10.1164/rccm.201003-0436OC CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bellani G, Laffey JG, Pham T et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315:788–800. doi: 10.1001/jama.2016.0291 CrossRefPubMedGoogle Scholar
  16. 16.
    Riviello ED, Kiviri W, Twagirumugabe T et al (2016) Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali modification of the Berlin definition. Am J Respir Crit Care Med 193:52–59. doi: 10.1164/rccm.201503-0584OC CrossRefPubMedGoogle Scholar
  17. 17.
    Thille AW, Esteban A, Fernández-Segoviano P et al (2013) Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical autopsies. Lancet Respir Med 1:395–401. doi: 10.1016/S2213-2600(13)70053-5 CrossRefPubMedGoogle Scholar
  18. 18.
    Tejera P, Meyer NJ, Chen F et al (2012) Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin. J Med Genet 49:671–680. doi: 10.1136/jmedgenet-2012-100972 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rubenfeld GD, Cooper C, Carter G et al (2004) Barriers to providing lung-protective ventilation to patients with acute lung injury. Crit Care Med 32:1289–1293. doi: 10.1097/01.CCM.0000127266.39560.96 CrossRefPubMedGoogle Scholar
  20. 20.
    Koenig HC, Finkel BB, Khalsa SS et al (2011) Performance of an automated electronic acute lung injury screening system in intensive care unit patients. Crit Care Med 39:98–104. doi: 10.1097/CCM.0b013e3181feb4a0 CrossRefPubMedGoogle Scholar
  21. 21.
    Gajic O, Dabbagh O, Park PK et al (2011) Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med 183:462–470. doi: 10.1164/rccm.201004-0549OC CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Levitt JE, Calfee CS, Goldstein BA et al (2013) Early acute lung injury: criteria for identifying lung injury prior to the need for positive pressure ventilation. Crit Care Med 41:1929–1937. doi: 10.1097/CCM.0b013e31828a3d99 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bouhemad B, Brisson H, Le-Guen M et al (2011) Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med 183:341–347. doi: 10.1164/rccm.201003-0369OC CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao Z, Möller K, Steinmann D et al (2009) Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med 35:1900–1906. doi: 10.1007/s00134-009-1589-y CrossRefPubMedGoogle Scholar
  25. 25.
    Talmor D, Sarge T, Malhotra A et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359:2095–2104. doi: 10.1056/NEJMoa0708638 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Beitler JR, Majumdar R, Hubmayr RD et al (2016) Volume delivered during recruitment maneuver predicts lung stress in acute respiratory distress syndrome. Crit Care Med 44:91–99. doi: 10.1097/CCM.0000000000001355 CrossRefPubMedGoogle Scholar
  27. 27.
    Chiumello D, Carlesso E, Cadringher P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355. doi: 10.1164/rccm.200710-1589OC CrossRefPubMedGoogle Scholar
  28. 28.
    Akoumianaki E, Maggiore SM, Valenza F et al (2014) The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med 189:520–531. doi: 10.1164/rccm.201312-2193CI CrossRefPubMedGoogle Scholar
  29. 29.
    Katzenelson R, Perel A, Berkenstadt H et al (2004) Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 32:1550–1554. doi: 10.1097/01.CCM.0000130995.18334.8B CrossRefPubMedGoogle Scholar
  30. 30.
    Craig TR, Duffy MJ, Shyamsundar M et al (2010) Extravascular lung water indexed to predicted body weight is a novel predictor of intensive care unit mortality in patients with acute lung injury. Crit Care Med 38:114–120. doi: 10.1097/CCM.0b013e3181b43050 CrossRefPubMedGoogle Scholar
  31. 31.
    Levitt JE, Bedi H, Calfee CS et al (2009) Identification of early acute lung injury at initial evaluation in an acute care setting prior to the onset of respiratory failure. Chest 135:936–943. doi: 10.1378/chest.08-2346 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Agrawal A, Matthay MA, Kangelaris KN et al (2013) Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am J Respir Crit Care Med 187:736–742. doi: 10.1164/rccm.201208-1460OC CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chew MS, Ihrman L, During J et al (2012) Extravascular lung water index improves the diagnostic accuracy of lung injury in patients with shock. Crit Care 16:R1. doi: 10.1186/cc10599 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Serpa Neto A, Cardoso SO, Manetta JA et al (2012) Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA 308:1651–1659. doi: 10.1001/jama.2012.13730 CrossRefPubMedGoogle Scholar
  35. 35.
    Lellouche F, Bouchard P-A, Simard S et al (2013) Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensive Care Med 39:463–471. doi: 10.1007/s00134-012-2799-2 CrossRefPubMedGoogle Scholar
  36. 36.
    The PROVE Network Investigators, For the Clinical Trial Network of the European Society of Anaesthesiology (2014) High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet. doi: 10.1016/S0140-6736(14)60416-5 Google Scholar
  37. 37.
    Frat J-P, Thille AW, Mercat A et al (2015) High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. doi: 10.1056/NEJMoa1503326 Google Scholar
  38. 38.
    Beitler JR, Schoenfeld DA, Thompson BT (2014) Preventing ARDS: progress, promise, and pitfalls. Chest 146:1102–1113. doi: 10.1378/chest.14-0555 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Pelosi P, D’Andrea L, Vitale G et al (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149:8–13. doi: 10.1164/ajrccm.149.1.8111603 CrossRefPubMedGoogle Scholar
  40. 40.
    Amato MBP, Meade MO, Slutsky AS et al (2015) Driving pressure and survival in acute respiratory distress syndrome. N Engl J Med 372:747–755CrossRefPubMedGoogle Scholar
  41. 41.
    Martin-Loeches I, de Haro C, Dellinger RP et al (2013) Effectiveness of an inspiratory pressure-limited approach to mechanical ventilation in septic patients. Eur Respir J 41:157–164. doi: 10.1183/09031936.00221611 CrossRefPubMedGoogle Scholar
  42. 42.
    Heart National, Lung, and Blood Institute ARDS Clinical Trials Network (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336. doi: 10.1056/NEJMoa032193 CrossRefGoogle Scholar
  43. 43.
    Meade MO, Cook DJ, Guyatt GH et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645. doi: 10.1001/jama.299.6.637 CrossRefPubMedGoogle Scholar
  44. 44.
    Caironi P, Cressoni M, Chiumello D et al (2010) Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med 181:578–586. doi: 10.1164/rccm.200905-0787OC CrossRefPubMedGoogle Scholar
  45. 45.
    Goligher EC, Kavanagh BP, Rubenfeld GD et al (2014) Oxygenation response to positive end-expiratory pressure predicts mortality in acute respiratory distress syndrome: a secondary analysis of the LOVS and ExPress Trials. Am J Respir Crit Care Med 190:70–76. doi: 10.1164/rccm.201404-0688OC CrossRefPubMedGoogle Scholar
  46. 46.
    Suzumura EA, Figueiró M, Normilio-Silva K et al (2014) Effects of alveolar recruitment maneuvers on clinical outcomes in patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Intensive Care Med 40:1227–1240. doi: 10.1007/s00134-014-3413-6 CrossRefPubMedGoogle Scholar
  47. 47.
    Cressoni M, Cadringher P, Chiurazzi C et al (2014) Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 189:149–158. doi: 10.1164/rccm.201308-1567OC PubMedGoogle Scholar
  48. 48.
    Goligher EC, Kavanagh BP, Rubenfeld GD, Ferguson ND (2015) Physiologic responsiveness should guide entry into randomized controlled trials. Am J Respir Crit Care Med 192:1416–1419. doi: 10.1164/rccm.201410-1832CP CrossRefPubMedGoogle Scholar
  49. 49.
    Kacmarek RM, Villar J, Sulemanji D et al (2016) Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial. Crit Care Med 44:32–42. doi: 10.1097/CCM.0000000000001383 CrossRefPubMedGoogle Scholar
  50. 50.
    Grasso S, Stripoli T, De Michele M et al (2007) ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med 176:761–767. doi: 10.1164/rccm.200702-193OC CrossRefPubMedGoogle Scholar
  51. 51.
    Mercat A, Richard J-CM, Vielle B et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:646–655. doi: 10.1001/jama.299.6.646 CrossRefPubMedGoogle Scholar
  52. 52.
    Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354. doi: 10.1056/NEJM199802053380602 CrossRefPubMedGoogle Scholar
  53. 53.
    Spieth PM, Carvalho AR, Pelosi P et al (2009) Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med 179:684–693. doi: 10.1164/rccm.200806-975OC CrossRefPubMedGoogle Scholar
  54. 54.
    Goligher EC, Fan E, Herridge MS et al (2015) Evolution of diaphragm thickness during mechanical ventilation: impact of inspiratory effort. Am J Respir Crit Care Med 192:1080–1088. doi: 10.1164/rccm.201503-0620OC CrossRefPubMedGoogle Scholar
  55. 55.
    Yoshida T, Torsani V, Gomes S et al (2013) Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 188:1420–1427. doi: 10.1164/rccm.201303-0539OC CrossRefPubMedGoogle Scholar
  56. 56.
    Pohlman MC, McCallister KE, Schweickert WD et al (2008) Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 36:3019–3023. doi: 10.1097/CCM.0b013e31818b308b CrossRefPubMedGoogle Scholar
  57. 57.
    Papazian L, Forel JM, Gacouin A et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–1116. doi: 10.1056/NEJMoa1005372 CrossRefPubMedGoogle Scholar
  58. 58.
    Peek GJ, Mugford M, Tiruvoipati R et al (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374:1351–1363. doi: 10.1016/S0140-6736(09)61069-2 CrossRefPubMedGoogle Scholar
  59. 59.
    Schmidt M, Zogheib E, Rozé H et al (2013) The PRESERVE mortality risk score and analysis of long-term outcomes after extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. Intensive Care Med 39:1704–1713. doi: 10.1007/s00134-013-3037-2 CrossRefPubMedGoogle Scholar
  60. 60.
    Bein T, Weber-Carstens S, Goldmann A et al (2013) Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus “conventional” protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 39:847–856. doi: 10.1007/s00134-012-2787-6 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Terragni PP, Del Sorbo L, Mascia L et al (2009) Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 111:826–835. doi: 10.1097/ALN.0b013e3181b764d2 CrossRefPubMedGoogle Scholar
  62. 62.
    Abrams DC, Brenner K, Burkart KM et al (2013) Pilot study of extracorporeal carbon dioxide removal to facilitate extubation and ambulation in exacerbations of chronic obstructive pulmonary disease. Ann Am Thorac Soc 10:307–314. doi: 10.1513/AnnalsATS.201301-021OC CrossRefPubMedGoogle Scholar
  63. 63.
    Hoeper MM, Wiesner O, Hadem J et al (2013) Extracorporeal membrane oxygenation instead of invasive mechanical ventilation in patients with acute respiratory distress syndrome. Intensive Care Med 39:2056–2057. doi: 10.1007/s00134-013-3052-3 CrossRefPubMedGoogle Scholar
  64. 64.
    Zanella A, Mangili P, Redaelli S et al (2014) Regional blood acidification enhances extracorporeal carbon dioxide removal: a 48-hour animal study. Anesthesiology 120:416–424. doi: 10.1097/ALN.0000000000000099 CrossRefPubMedGoogle Scholar
  65. 65.
    Zanella A, Castagna L, Salerno D et al (2015) Respiratory electrodialysis: a novel, highly efficient extracorporeal CO2 removal technique. Am J Respir Crit Care Med 192:719–726. doi: 10.1164/rccm.201502-0289OC CrossRefPubMedGoogle Scholar
  66. 66.
    Duggal A, Ganapathy A, Ratnapalan M, Adhikari NK (2015) Pharmacological treatments for acute respiratory distress syndrome: systematic review. Minerva Anestesiol 81:567–588PubMedGoogle Scholar
  67. 67.
    Spieth PM, Zhang H (2014) Pharmacological therapies for acute respiratory distress syndrome. Curr Opin Crit Care 20:113–121. doi: 10.1097/MCC.0000000000000056 CrossRefPubMedGoogle Scholar
  68. 68.
    Wilson JG, Liu KD, Zhuo H et al (2015) Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med 3:24–32. doi: 10.1016/S2213-2600(14)70291-7 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Guerin C, Reignier J, Richard J-C et al (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368:2159–2168. doi: 10.1056/NEJMoa1214103 CrossRefPubMedGoogle Scholar
  70. 70.
    Beitler JR, Guerin C, Ayzac L et al (2015) PEEP titration during prone positioning for acute respiratory distress syndrome. Crit Care 19:436. doi: 10.1186/s13054-015-1153-9 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Graf J, Marini JJ (2008) Do airway secretions play an underappreciated role in acute respiratory distress syndrome? Curr Opin Crit Care 14:44–49. doi: 10.1097/MCC.0b013e3282f2f4cb CrossRefPubMedGoogle Scholar
  72. 72.
    Zanella A, Cressoni M, Epp M et al (2012) Effects of tracheal orientation on development of ventilator-associated pneumonia: an experimental study. Intensive Care Med 38:677–685. doi: 10.1007/s00134-012-2495-2 CrossRefPubMedGoogle Scholar
  73. 73.
    Zanella A, Bellani G, Pesenti A (2010) Airway pressure and flow monitoring. Curr Opin Crit Care 16:255–260. doi: 10.1097/MCC.0b013e328337f209 CrossRefPubMedGoogle Scholar
  74. 74.
    Mehta C, Gao P, Bhatt DL et al (2009) Optimizing trial design: sequential, adaptive, and enrichment strategies. Circulation 119:597–605. doi: 10.1161/CIRCULATIONAHA.108.809707 CrossRefPubMedGoogle Scholar
  75. 75.
    Herridge MS, Tansey CM, Matte A et al (2011) Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 364:1293–1304. doi: 10.1056/NEJMoa1011802 CrossRefPubMedGoogle Scholar
  76. 76.
    Mikkelsen ME, Christie JD, Lanken PN et al (2012) The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med 185:1307–1315. doi: 10.1164/rccm.201111-2025OC CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Becker LB, Aufderheide TP, Geocadin RG et al (2011) Primary outcomes for resuscitation science studies: a consensus statement from the American Heart Association. Circulation 124:2158–2177. doi: 10.1161/CIR.0b013e3182340239 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2016

Authors and Affiliations

  • Jeremy R. Beitler
    • 1
    Email author
  • Ewan C. Goligher
    • 2
  • Matthieu Schmidt
    • 3
  • Peter M. Spieth
    • 4
  • Alberto Zanella
    • 5
  • Ignacio Martin-Loeches
    • 6
  • Carolyn S. Calfee
    • 7
  • Alexandre B. Cavalcanti
    • 8
  • The ARDSne(x)t Investigators
  1. 1.Division of Pulmonary and Critical Care MedicineUniversity of California, San DiegoSan DiegoUSA
  2. 2.Interdepartmental Division of Critical Care Medicine, Department of PhysiologyUniversity of TorontoTorontoCanada
  3. 3.Service de Réanimation Médicale, iCAN, Institute of Cardiometabolism and NutritionHôpital de la Pitié-SalpêtrièreParisFrance
  4. 4.Department of Anesthesiology and Critical Care MedicineUniversity Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
  5. 5.Dipartimento di Anestesia, Rianimazione ed Emergenza UrgenzaFondazione IRCCS Ca’ Granda – Ospedale Maggiore PoliclinicoMilanItaly
  6. 6.Multidisciplinary Intensive Care Research Organization (MICRO), Wellcome Trust – HRB Clinical Research, Department of Clinical Medicine, Trinity Centre for Health SciencesSt James’s University HospitalDublinIreland
  7. 7.Division of Pulmonary and Critical Care Medicine and Cardiovascular Research Institute, Departments of Medicine and AnesthesiaUniversity of California, San FranciscoSan FranciscoUSA
  8. 8.Research InstituteHCor, Hospital do CoraçãoSão PauloBrazil

Personalised recommendations