Advertisement

Intensive Care Medicine

, Volume 42, Issue 5, pp 879–888 | Cite as

Development and validation of the pediatric risk estimate score for children using extracorporeal respiratory support (Ped-RESCUERS)

  • Ryan P. BarbaroEmail author
  • Philip S. Boonstra
  • Matthew L. Paden
  • Lloyd A. Roberts
  • Gail M. Annich
  • Robert H. Bartlett
  • Frank W. Moler
  • Matthew M. Davis
Original

Abstract

Purpose

To develop and validate the Pediatric Risk Estimation Score for Children Using Extracorporeal Respiratory Support (Ped-RESCUERS). Ped-RESCUERS is designed to estimate the in-hospital mortality risk for children prior to receiving respiratory extracorporeal membrane oxygenation (ECMO) support.

Methods

This study used data from an international registry of patients aged 29 days to less than 18 years who received ECMO support from 2009 to 2014. We divided the registry into development and validation datasets by calendar date. Candidate variables were selected for model inclusion if the variable independently changed the mortality risk by at least 2 % in a Bayesian logistic regression model with in-hospital mortality as the outcome. We characterized the model’s ability to discriminate mortality with the area under curve (AUC) of the receiver operating characteristic.

Results

From 2009 to 2014, 2458 non-neonatal children received ECMO for respiratory support, with a mortality rate of 39.8 %. The development dataset contained 1611 children receiving ECMO support from 2009 to 2012. The model included the following variables: pre-ECMO pH, pre-ECMO arterial partial pressure of carbon dioxide, hours of intubation prior to ECMO support, hours of admission at ECMO center prior to ECMO support, ventilator type, mean airway pressure, pre-ECMO use of milrinone, and a diagnosis of pertussis, asthma, bronchiolitis, or malignancy. The validation dataset included 438 children receiving ECMO support from 2013 to 2014. The Ped-RESCUERS model from the development dataset had an AUC of 0.690, and the validation dataset had an AUC of 0.634.

Conclusions

Ped-RESCUERS provides a novel measure of pre-ECMO mortality risk. Future studies should seek external validation and improved discrimination of this mortality prediction tool.

Keywords

Extracorporeal membrane oxygenation Risk assessment Risk adjustment Severity of illness index Mortality Pediatric 

Notes

Acknowledgments

The authors would like to thank the Extracorporeal Life Support Organization for the opportunity to conduct this research. They also thank Folafoluwa O. Odetola, MD, MPH for his valuable assistance in editing and revising this manuscript.

Compliance with ethical standards

Conflicts of interest

Drs. Bartlett, Paden, and Annich acknowledge that they are on the Extracorporeal Life Support Organization steering committee. The other authors have no conflicts of interest relevant to this article to disclose.

Source of funding

Dr. Barbaro received a research award from the Extracorporeal Life Support Organization to support this study. Dr. Barbaro was supported by a T32 (HD007534) Grant funded by the Eunice Kennedy Shriver National Institute for Child Health and Human Development, for which Dr. Davis was the principal investigator.

Supplementary material

134_2016_4285_MOESM1_ESM.docx (190 kb)
Supplementary material 1 (DOCX 189 kb)

References

  1. 1.
    Pollack MM, Ruttimann UE, Getson PR (1987) Accurate prediction of the outcome of pediatric intensive care. A new quantitative method. N Engl J Med 316:134–139CrossRefPubMedGoogle Scholar
  2. 2.
    Pollack MM, Holubkov R, Funai T, Berger JT, Clark AE, Meert K, Berg RA, Carcillo J, Wessel DL, Moler F, Dalton H, Newth CJ, Shanley T, Harrison RE, Doctor A, Jenkins TL, Tamburro R, Dean JM (2015) Simultaneous prediction of new morbidity, mortality, and survival without new morbidity from pediatric intensive care: a new paradigm for outcomes assessment. Crit Care Med 43:1699–1709CrossRefPubMedGoogle Scholar
  3. 3.
    Fonarow GC, Pan W, Saver JL, Smith EE, Reeves MJ, Broderick JP, Kleindorfer DO, Sacco RL, Olson DM, Hernandez AF, Peterson ED, Schwamm LH (2012) Comparison of 30-day mortality models for profiling hospital performance in acute ischemic stroke with vs without adjustment for stroke severity. JAMA 308:257–264CrossRefPubMedGoogle Scholar
  4. 4.
    Krumholz HM, Wang Y, Mattera JA, Wang Y, Han LF, Ingber MJ, Roman S, Normand SL (2006) An administrative claims model suitable for profiling hospital performance based on 30-day mortality rates among patients with heart failure. Circulation 113:1693–1701CrossRefPubMedGoogle Scholar
  5. 5.
    Krumholz HM, Brindis RG, Brush JE, Cohen DJ, Epstein AJ, Furie K, Howard G, Peterson ED, Rathore SS, Smith SC Jr, Spertus JA, Wang Y, Normand SL (2006) Standards for statistical models used for public reporting of health outcomes: an American Heart Association Scientific Statement from the Quality of Care and Outcomes Research Interdisciplinary Writing Group: cosponsored by the Council on Epidemiology and Prevention and the Stroke Council. Endorsed by the American College of Cardiology Foundation. Circulation 113:456–462CrossRefPubMedGoogle Scholar
  6. 6.
    Lindenauer PK, Grosso LM, Wang C, Wang Y, Krishnan JA, Lee TA, Au DH, Mularski RA, Bernheim SM, Drye EE (2013) Development, validation, and results of a risk-standardized measure of hospital 30-day mortality for patients with exacerbation of chronic obstructive pulmonary disease. J Hosp Med 8:428–435CrossRefPubMedGoogle Scholar
  7. 7.
    Horbar JD, Carpenter JH, Badger GJ, Kenny MJ, Soll RF, Morrow KA, Buzas JS (2012) Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009. Pediatrics 129:1019–1026CrossRefPubMedGoogle Scholar
  8. 8.
    Panzer RJ, Gitomer RS, Greene WH, Webster PR, Landry KR, Riccobono CA (2013) Increasing demands for quality measurement. JAMA 310:1971–1980CrossRefPubMedGoogle Scholar
  9. 9.
    Jacobs JP, O’Brien SM, Pasquali SK, Gaynor JW, Mayer JE Jr, Karamlou T, Welke KF, Filardo G, Han JM, Kim S, Quintessenza JA, Pizarro C, Tchervenkov CI, Lacour-Gayet F, Mavroudis C, Backer CL, Austin EH 3rd, Fraser CD, Tweddell JS, Jonas RA, Edwards FH, Grover FL, Prager RL, Shahian DM, Jacobs ML (2015) The Society of Thoracic Surgeons Congenital Heart Surgery Database Mortality Risk Model: part 2—clinical application. Ann Thorac Surg 100(3):1063–1070CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Thabut G, Christie JD, Kremers WK, Fournier M, Halpern SD (2010) Survival differences following lung transplantation among US transplant centers. JAMA 304:53–60CrossRefPubMedGoogle Scholar
  11. 11.
    Cohen ME, Ko CY, Bilimoria KY, Zhou L, Huffman K, Wang X, Liu Y, Kraemer K, Meng X, Merkow R, Chow W, Matel B, Richards K, Hart AJ, Dimick JB, Hall BL (2013) Optimizing ACS NSQIP modeling for evaluation of surgical quality and risk: patient risk adjustment, procedure mix adjustment, shrinkage adjustment, and surgical focus. J Am Coll Surg 217(336–346):e331Google Scholar
  12. 12.
    Richardson DK, Gray JE, McCormick MC, Workman K, Goldmann DA (1993) Score for neonatal acute physiology: a physiologic severity index for neonatal intensive care. Pediatrics 91:617–623PubMedGoogle Scholar
  13. 13.
    Kahn JM, Goss CH, Heagerty PJ, Kramer AA, O’Brien CR, Rubenfeld GD (2006) Hospital volume and the outcomes of mechanical ventilation. N Engl J Med 355(1):41–50CrossRefPubMedGoogle Scholar
  14. 14.
    Tyson JE, Parikh NA, Langer J, Green C, Higgins RD (2008) Intensive care for extreme prematurity—moving beyond gestational age. N Engl J Med 358(16):1672–1681CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schmidt M, Bailey M, Sheldrake J, Hodgson C, Aubron C, Rycus PT, Scheinkestel C, Cooper DJ, Brodie D, Pellegrino V, Combes A, Pilcher D (2014) Predicting survival after extracorporeal membrane oxygenation for severe acute respiratory failure. The Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score. Am J Respir Crit Care Med 189:1374–1382CrossRefPubMedGoogle Scholar
  16. 16.
    Paden ML, Rycus PT, Thiagarajan RR (2014) Update and outcomes in extracorporeal life support. Semin Perinatol 38(2):65–70CrossRefPubMedGoogle Scholar
  17. 17.
    Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, Vickers AJ, Ransohoff DF, Collins GS (2015) Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 162:W1–W73CrossRefPubMedGoogle Scholar
  18. 18.
    Gadepalli SK, Hirschl RB (2015) Extracorporeal life support: updates and controversies. Semin Pediatr Surg 24:8–11CrossRefPubMedGoogle Scholar
  19. 19.
    MacLaren G, Combes A, Bartlett RH (2012) Contemporary extracorporeal membrane oxygenation for adult respiratory failure: life support in the new era. Intensive Care Med 38(2):210–220CrossRefPubMedGoogle Scholar
  20. 20.
    Rubin DB (2004) Multiple imputation for nonresponse in surveys. Wiley, New YorkGoogle Scholar
  21. 21.
    Van Buuren S, Brand JPL, Groothuis-Oudshoorn CGM, Rubin DB (2006) Fully conditional specication in multivariate imputation. J Stat Comput Simul 76(12):1049–1064CrossRefGoogle Scholar
  22. 22.
    White IR, Royston P, Wood AM (2011) Multiple imputation using chained equations: issues and guidance for practice. Stat Med 30(4):377–399CrossRefPubMedGoogle Scholar
  23. 23.
    Janssen KJ, Donders AR, Harrell FE Jr, Vergouwe Y, Chen Q, Grobbee DE, Moons KG (2010) Missing covariate data in medical research: to impute is better than to ignore. J Clin Epidemiol 63(7):721–727CrossRefPubMedGoogle Scholar
  24. 24.
    Zabrocki LA, Brogan TV, Statler KD, Poss WB, Rollins MD, Bratton SL (2011) Extracorporeal membrane oxygenation for pediatric respiratory failure: survival and predictors of mortality. Crit Care Med 39(2):364–370CrossRefPubMedGoogle Scholar
  25. 25.
    Feudtner C, Berry JG, Parry G, Hain P, Morse RB, Slonim AD, Shah SS, Hall M (2011) Statistical uncertainty of mortality rates and rankings for children’s hospitals. Pediatrics 128(4):e966–e972CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gelman A (2008) Scaling regression inputs by dividing by two standard deviations. Stat Med 27(15):2865–2873CrossRefPubMedGoogle Scholar
  27. 27.
    Brier GW (1950) Verification of forecasts expressed in terms of probability. Mon Weather Rev 78:1–3CrossRefGoogle Scholar
  28. 28.
    Labarere J, Renaud B, Fine MJ (2014) How to derive and validate clinical prediction models for use in intensive care medicine. Intensive Care Med 40(4):513–527CrossRefPubMedGoogle Scholar
  29. 29.
    Cashen K, Thiagarajan RR, Collins JW Jr, Rycus PT, Backer CL, Reynolds M, Costello JM (2015) Extracorporeal membrane oxygenation in pediatric trisomy 21: 30 years of experience from the Extracorporeal Life Support Organization Registry. J Pediatr 167(2):403–408CrossRefPubMedGoogle Scholar
  30. 30.
    Pollack MM, Holubkov R, Funai T, Dean JM, Berger JT, Wessel DL, Meert K, Berg RA, Newth CJ, Harrison RE, Carcillo J, Dalton H, Shanley T, Jenkins TL, Tamburro R (2016) The Pediatric Risk of Mortality score: update 2015. Pediatr Crit Care Med 17(1):2–9CrossRefPubMedGoogle Scholar
  31. 31.
    Leteurtre S, Duhamel A, Salleron J, Grandbastien B, Lacroix J, Leclerc F (2013) PELOD-2: an update of the PEdiatric Logistic Organ Dysfunction score. Crit Care Med 41(7):1761–1773CrossRefPubMedGoogle Scholar
  32. 32.
    Zimmerman JE, Kramer AA, McNair DS, Malila FM (2006) Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med 34(5):1297–1310CrossRefPubMedGoogle Scholar
  33. 33.
    Slater A, Shann F, Pearson G (2003) PIM2: a revised version of the Paediatric Index of Mortality. Intensive Care Med 29(2):278–285. doi: 10.1007/s00134-002-1601-2 CrossRefPubMedGoogle Scholar
  34. 34.
    Khemani RG, Rubin S, Belani S, Leung D, Erickson S, Smith LS, Zimmerman JJ, Newth CJ (2015) Pulse oximetry vs. PaO2 metrics in mechanically ventilated children: Berlin definition of ARDS and mortality risk. Intensive Care Med 41(1):94–102CrossRefPubMedGoogle Scholar
  35. 35.
    Blyth CR (1972) On Simpson’s paradox and the sure-thing principle. J Am Stat Assoc 67(338):364–366CrossRefGoogle Scholar
  36. 36.
    Antonelli M, Bonten M, Cecconi M, Chastre J, Citerio G, Conti G, Curtis JR, Hedenstierna G, Joannidis M, Macrae D, Maggiore SM, Mancebo J, Mebazaa A, Preiser JC, Rocco P, Timsit JF, Wernerman J, Zhang H (2013) Year in review in Intensive Care Medicine 2012: III. Noninvasive ventilation, monitoring and patient-ventilator interactions, acute respiratory distress syndrome, sedation, paediatrics and miscellanea. Intensive Care Med 39(4):543–557CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Barbaro RP, Odetola FO, Kidwell KM, Paden ML, Bartlett RH, Davis MM, Annich GM (2015) Association of hospital-level volume of extracorporeal membrane oxygenation cases and mortality—analysis of the Extracorporeal Life Support Organization Registry. Am J Respir Crit Care Med 191(8):894–901CrossRefPubMedGoogle Scholar
  38. 38.
    Straney L, Clements A, Parslow RC, Pearson G, Shann F, Alexander J, Slater A (2013) Paediatric Index of Mortality 3: an updated model for predicting mortality in pediatric intensive care. Pediatr Crit Care Med 14(7):673–681CrossRefPubMedGoogle Scholar
  39. 39.
    Morris KP, McShane P, Stickley J, Parslow RC (2012) The relationship between blood lactate concentration, the Paediatric Index of Mortality 2 (PIM2) and mortality in paediatric intensive care. Intensive Care Med 38(12):2042–2046CrossRefPubMedGoogle Scholar
  40. 40.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–1308CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2016

Authors and Affiliations

  • Ryan P. Barbaro
    • 1
    • 2
    Email author
  • Philip S. Boonstra
    • 3
  • Matthew L. Paden
    • 4
  • Lloyd A. Roberts
    • 5
  • Gail M. Annich
    • 6
  • Robert H. Bartlett
    • 7
  • Frank W. Moler
    • 2
  • Matthew M. Davis
    • 1
    • 2
    • 8
    • 9
  1. 1.Department of PediatricsUniversity of MichiganAnn ArborUSA
  2. 2.Child Health Evaluation and Research (CHEAR) UnitUniversity of MichiganAnn ArborUSA
  3. 3.School of Public Health Department of BiostatisticsUniversity of MichiganAnn ArborUSA
  4. 4.Division of Pediatric Critical CareEmory UniversityAtlantaUSA
  5. 5.Intensive Care Department, Alfred Hospital and School of Public Health and Preventative MedicineMonash University MelbourneClaytonAustralia
  6. 6.Critical Care MedicineUniversity of TorontoTorontoCanada
  7. 7.Department of SurgeryUniversity of MichiganAnn ArborUSA
  8. 8.Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  9. 9.Gerald R. Ford School of Public Policy and Department of Health Management and Policy, School of Public HealthUniversity of MichiganAnn ArborUSA

Personalised recommendations