Advertisement

Intensive Care Medicine

, Volume 40, Issue 4, pp 471–483 | Cite as

Year in review in Intensive Care Medicine 2013: III. Sepsis, infections, respiratory diseases, pediatrics

  • Jean-Francois Timsit
  • Giuseppe Citerio
  • Jan Bakker
  • Matteo Bassetti
  • Dominique Benoit
  • Maurizio Cecconi
  • J. Randall Curtis
  • Glenn Hernandez
  • Margaret Herridge
  • Samir Jaber
  • Michael Joannidis
  • Laurent Papazian
  • Mark Peters
  • Pierre Singer
  • Martin Smith
  • Marcio Soares
  • Antoni Torres
  • Antoine Vieillard-Baron
  • Elie AzoulayEmail author
Year in Review 2013

Micro- and macrocirculation in septic shock and severe sepsis

Dobutamine has been widely advocated to improve (inadequate) cardiac output in septic shock. However, on the basis of the double-blind, crossover, randomized study from Hernandez et al. [1], the microcirculatory and regional effects, despite improvement of the macrocirculation, seem to be limited. Indeed despite an increase in cardiac output and heart rate, with dobutamine, they found no significant impact on lactate level and sublingual vessel perfused density. This is in contrast to some other studies. The question now is were the results of these earlier studies wrong or is the current baseline resuscitation of critically ill patients so different from these earlier days that the state of the vasculature of our patients is now different when compared to those earlier days?

A change of case-mix related to these critical endothelial factors such as variations of endothelial protein C receptor polymorphisms [2] or of...

Keywords

Systemic Inflammatory Response Syndrome Colistin Intensive Care Unit Mortality Noninvasive Positive Pressure Ventilation Selective Digestive Decontamination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Conflicts of interest

None.

References

  1. 1.
    Hernandez G, Bruhn A, Luengo C et al (2013) Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med 39:1435–1443. doi: 10.1007/s00134-013-2982-0 PubMedCrossRefGoogle Scholar
  2. 2.
    Vassiliou AG, Maniatis NA, Kotanidou A et al (2013) Endothelial protein C receptor polymorphisms and risk of severe sepsis in critically ill patients. Intensive Care Med 39:1752–1759. doi: 10.1007/s00134-013-3018-5 PubMedCrossRefGoogle Scholar
  3. 3.
    Delabranche X, Boisrame-Helms J, Asfar P et al (2013) Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med 39:1695–1703. doi: 10.1007/s00134-013-2993-x PubMedCrossRefGoogle Scholar
  4. 4.
    Levi M, van der Poll T (2013) Endothelial injury in sepsis. Intensive Care Med 39:1839–1842. doi: 10.1007/s00134-013-3054-1 PubMedCrossRefGoogle Scholar
  5. 5.
    Yamakawa K, Ogura H, Fujimi S et al (2013) Recombinant human soluble thrombomodulin in sepsis-induced disseminated intravascular coagulation: a multicenter propensity score analysis. Intensive Care Med 39:644–652. doi: 10.1007/s00134-013-2822-2 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Pranskunas A, Koopmans M, Koetsier PM et al (2013) Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med 39:612–619. doi: 10.1007/s00134-012-2793-8 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Dünser MW, Takala J, Brunauer A, Bakker J (2013) Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care 17:326. doi: 10.1186/cc12727 PubMedCrossRefGoogle Scholar
  8. 8.
    Kurniati NF, Jongman RM, vom Hagen F et al (2013) The flow dependency of Tie2 expression in endotoxemia. Intensive Care Med 39:1262–1271. doi: 10.1007/s00134-013-2899-7 PubMedCrossRefGoogle Scholar
  9. 9.
    Huang DT, Angus DC, Barnato A et al (2013) Harmonizing international trials of early goal-directed resuscitation for severe sepsis and septic shock: methodology of ProCESS, ARISE, and ProMISe. Intensive Care Med 39:1760–1775. doi: 10.1007/s00134-013-3024-7 PubMedCrossRefGoogle Scholar
  10. 10.
    Guignant C, Venet F, Planel S et al (2013) Increased MerTK expression in circulating innate immune cells of patients with septic shock. Intensive Care Med 39:1556–1564. doi: 10.1007/s00134-013-3006-9 PubMedCrossRefGoogle Scholar
  11. 11.
    Kim YA, Ha E-J, Jhang WK, Park SJ (2013) Early blood lactate area as a prognostic marker in pediatric septic shock. Intensive Care Med 39:1818–1823. doi: 10.1007/s00134-013-2959-z PubMedCrossRefGoogle Scholar
  12. 12.
    Suberviola B, Castellanos-Ortega A, Ruiz Ruiz A et al (2013) Hospital mortality prognostication in sepsis using the new biomarkers suPAR and proADM in a single determination on ICU admission. Intensive Care Med 39:1945–1952. doi: 10.1007/s00134-013-3056-z PubMedCrossRefGoogle Scholar
  13. 13.
    Brinkman S, Abu-Hanna A, de Jonge E, de Keizer NF (2013) Prediction of long-term mortality in ICU patients: model validation and assessing the effect of using in-hospital versus long-term mortality on benchmarking. Intensive Care Med 39:1925–1931. doi: 10.1007/s00134-013-3042-5 PubMedCrossRefGoogle Scholar
  14. 14.
    Shimamoto Y, Fukuda T, Tanaka K et al (2013) Systemic inflammatory response syndrome criteria and vancomycin dose requirement in patients with sepsis. Intensive Care Med 39:1247–1252. doi: 10.1007/s00134-013-2909-9 PubMedCrossRefGoogle Scholar
  15. 15.
    Udy AA, Roberts JA, Lipman J (2013) Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med 39:2070–2082. doi: 10.1007/s00134-013-3088-4 PubMedCrossRefGoogle Scholar
  16. 16.
    Harron K, Wade A, Muller-Pebody B et al (2013) Risk-adjusted monitoring of blood-stream infection in paediatric intensive care: a data linkage study. Intensive Care Med 39:1080–1087. doi: 10.1007/s00134-013-2841-z PubMedCrossRefGoogle Scholar
  17. 17.
    Mermel LA, Allon M, Bouza E et al (2009) Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 49:1–45. doi: 10.1086/599376 PubMedCrossRefGoogle Scholar
  18. 18.
    Gowardman JR, Jeffries P, Lassig-Smith M et al (2013) A comparative assessment of two conservative methods for the diagnosis of catheter-related infection in critically ill patients. Intensive Care Med 39:109–116. doi: 10.1007/s00134-012-2689-7 PubMedCrossRefGoogle Scholar
  19. 19.
    Airapetian N, Maizel J, Langelle F et al (2013) Ultrasound-guided central venous cannulation is superior to quick-look ultrasound and landmark methods among inexperienced operators: a prospective randomized study. Intensive Care Med 39:1938–1944. doi: 10.1007/s00134-013-3072-z PubMedCrossRefGoogle Scholar
  20. 20.
    Bedel J, Vallee F, Mari A et al (2013) Guidewire localization by transthoracic echocardiography during central venous catheter insertion: a periprocedural method to evaluate catheter placement. Intensive Care Med 39:1932–1937. doi: 10.1007/s00134-013-3097-3 PubMedCrossRefGoogle Scholar
  21. 21.
    European Antimicrobial Resistance Surveillance Network (EARS-Net) (2013) Antimicrobial resistance surveillance in Europe 2012. Surveillance report. http://www.ecdc.europa.eu/en/activities/surveillance/EARS-Net. Accessed 29 Jan 2014
  22. 22.
    Tabah A, Koulenti D, Laupland K et al (2012) Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study. Intensive Care Med 38:1930–1945. doi: 10.1007/s00134-012-2695-9 PubMedCrossRefGoogle Scholar
  23. 23.
    Routsi C, Pratikaki M, Platsouka E et al (2013) Risk factors for carbapenem-resistant gram-negative bacteremia in intensive care unit patients. Intensive Care Med 39:1253–1261. doi: 10.1007/s00134-013-2914-z PubMedCrossRefGoogle Scholar
  24. 24.
    Oostdijk EAN, Smits L, de Smet AMGA et al (2013) Colistin resistance in gram-negative bacteria during prophylactic topical colistin use in intensive care units. Intensive Care Med 39:653–660. doi: 10.1007/s00134-012-2761-3 PubMedCrossRefGoogle Scholar
  25. 25.
    Halaby T, Al Naiemi N, Kluytmans J et al (2013) Emergence of colistin resistance in Enterobacteriaceae after the introduction of selective digestive tract decontamination in an intensive care unit. Antimicrob Agents Chemother 57:3224–3229. doi: 10.1128/AAC.02634-12 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Schultsz C, Bootsma MCJ, Loan HT et al (2013) Effects of infection control measures on acquisition of five antimicrobial drug-resistant microorganisms in a tetanus intensive care unit in Vietnam. Intensive Care Med 39:661–671. doi: 10.1007/s00134-012-2771-1 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Derde LPG, Cooper BS, Goossens H et al (2014) Interventions to reduce colonisation and transmission of antimicrobial-resistant bacteria in intensive care units: an interrupted time series study and cluster randomised trial. Lancet Infect Dis 14:31–39. doi: 10.1016/S1473-3099(13)70295-0 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Zahar JR, Garrouste-Orgeas M, Vesin A et al (2013) Impact of contact isolation for multidrug-resistant organisms on the occurrence of medical errors and adverse events. Intensive Care Med 39:2153–2160. doi: 10.1007/s00134-013-3071-0 PubMedCrossRefGoogle Scholar
  29. 29.
    Vogiatzi L, Ilia S, Sideri G et al (2013) Invasive candidiasis in pediatric intensive care in Greece: a nationwide study. Intensive Care Med 39:2188–2195. doi: 10.1007/s00134-013-3057-y PubMedCrossRefGoogle Scholar
  30. 30.
    Bassetti M, Marchetti M, Chakrabarti A et al (2013) A research agenda on the management of intra-abdominal candidiasis: results from a consensus of multinational experts. Intensive Care Med 39:2092–2106. doi: 10.1007/s00134-013-3109-3 PubMedCrossRefGoogle Scholar
  31. 31.
    Di Pasquale M, Esperatti M, Crisafulli E et al (2013) Impact of chronic liver disease in intensive care unit acquired pneumonia: a prospective study. Intensive Care Med 39:1776–1784. doi: 10.1007/s00134-013-3025-6 PubMedCrossRefGoogle Scholar
  32. 32.
    Martin-Loeches I, Deja M, Koulenti D et al (2013) Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med 39:672–681. doi: 10.1007/s00134-012-2808-5 PubMedCrossRefGoogle Scholar
  33. 33.
    Tumbarello M, De Pascale G, Trecarichi EM et al (2013) Clinical outcomes of Pseudomonas aeruginosa pneumonia in intensive care unit patients. Intensive Care Med 39:682–692. doi: 10.1007/s00134-013-2828-9 PubMedCrossRefGoogle Scholar
  34. 34.
    Rello J, Borgatta B, Lisboa T (2013) Risk factors for Pseudomonas aeruginosa pneumonia in the early twenty-first century. Intensive Care Med 39:2204–2206. doi: 10.1007/s00134-013-3046-1 PubMedCrossRefGoogle Scholar
  35. 35.
    Brusselaers N, Labeau S, Vogelaers D, Blot S (2013) Value of lower respiratory tract surveillance cultures to predict bacterial pathogens in ventilator-associated pneumonia: systematic review and diagnostic test accuracy meta-analysis. Intensive Care Med 39:365–375. doi: 10.1007/s00134-012-2759-x PubMedCrossRefGoogle Scholar
  36. 36.
    Bouza E, Perez Granda MJ, Hortal J et al (2013) Pre-emptive broad-spectrum treatment for ventilator-associated pneumonia in high-risk patients. Intensive Care Med 39:1547–1555. doi: 10.1007/s00134-013-2997-6 PubMedCrossRefGoogle Scholar
  37. 37.
    Villar J, Kacmarek RM (2013) What is new in refractory hypoxemia? Intensive Care Med 39:1207–1210. doi: 10.1007/s00134-013-2905-0 PubMedCrossRefGoogle Scholar
  38. 38.
    Ehrmann S, Roche-Campo F, Papa GFS et al (2013) Aerosol therapy during mechanical ventilation: an international survey. Intensive Care Med 39:1048–1056. doi: 10.1007/s00134-013-2872-5 PubMedCrossRefGoogle Scholar
  39. 39.
    Seymour CW, Yende S, Scott MJ et al (2013) Metabolomics in pneumonia and sepsis: an analysis of the GenIMS cohort study. Intensive Care Med 39:1423–1434. doi: 10.1007/s00134-013-2935-7 PubMedCrossRefGoogle Scholar
  40. 40.
    Martin-Loeches I, Bermejo-Martin JF, Valles J et al (2013) Macrolide-based regimens in absence of bacterial co-infection in critically ill H1N1 patients with primary viral pneumonia. Intensive Care Med 39:693–702. doi: 10.1007/s00134-013-2829-8 PubMedCrossRefGoogle Scholar
  41. 41.
    Cracco C, Fartoukh M, Prodanovic H et al (2013) Safety of performing fiberoptic bronchoscopy in critically ill hypoxemic patients with acute respiratory failure. Intensive Care Med 39:45–52. doi: 10.1007/s00134-012-2687-9 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Jong A, Clavieras N, Conseil M et al (2013) Implementation of a combo videolaryngoscope for intubation in critically ill patients: a before–after comparative study. Intensive Care Med 39:2144–2152. doi: 10.1007/s00134-013-3099-1 PubMedCrossRefGoogle Scholar
  43. 43.
    De Gast-Bakker DH, de Wilde RBP, Hazekamp MG et al (2013) Safety and effects of two red blood cell transfusion strategies in pediatric cardiac surgery patients: a randomized controlled trial. Intensive Care Med 39:2011–2019. doi: 10.1007/s00134-013-3085-7 PubMedCrossRefGoogle Scholar
  44. 44.
    Du Pont-Thibodeau G, Lacroix J (2013) Do cardiac children need more red blood cell transfusions than other critically ill children? Intensive Care Med 39:2050–2052. doi: 10.1007/s00134-013-3082-x PubMedCrossRefGoogle Scholar
  45. 45.
    Tritschler T, Frey B (2013) Is the number of drugs independently associated with mortality? Intensive Care Med 39:2060–2062. doi: 10.1007/s00134-013-3065-y PubMedCrossRefGoogle Scholar
  46. 46.
    Vet NJ, Ista E, de Wildt SN et al (2013) Optimal sedation in pediatric intensive care patients: a systematic review. Intensive Care Med 39:1524–1534. doi: 10.1007/s00134-013-2971-3 PubMedCrossRefGoogle Scholar
  47. 47.
    Van de Voorde P, Van Lander A, Colpaert K et al (2013) An urgent plea: give the use of prolonged propofol infusion a second thought. Intensive Care Med 39:2058–2059. doi: 10.1007/s00134-013-3058-x PubMedCrossRefGoogle Scholar
  48. 48.
    Garcia Guerra G, Joffe AR, Senthilselvan A et al (2013) Incidence of milrinone blood levels outside the therapeutic range and their relevance in children after cardiac surgery for congenital heart disease. Intensive Care Med 39:951–957. doi: 10.1007/s00134-013-2858-3 PubMedCrossRefGoogle Scholar
  49. 49.
    Smulders CA, van Gestel JPJ, Bos AP (2013) Are central line bundles and ventilator bundles effective in critically ill neonates and children? Intensive Care Med 39:1352–1358. doi: 10.1007/s00134-013-2927-7 PubMedCrossRefGoogle Scholar
  50. 50.
    Ramnarayan P, Patel K, Pappachan J et al (2013) Characteristics and outcome of children admitted to adult intensive care units in England, Wales and Northern Ireland (1996–2011). Intensive Care Med 39:2020–2027. doi: 10.1007/s00134-013-3010-0 PubMedCrossRefGoogle Scholar
  51. 51.
    Polito A, Barrett CS, Wypij D et al (2013) Neurologic complications in neonates supported with extracorporeal membrane oxygenation. An analysis of ELSO registry data. Intensive Care Med 39:1594–1601. doi: 10.1007/s00134-013-2985-x PubMedCrossRefGoogle Scholar
  52. 52.
    Madderom MJ, Reuser JJCM, Utens EMWJ et al (2013) Neurodevelopmental, educational and behavioral outcome at 8 years after neonatal ECMO: a nationwide multicenter study. Intensive Care Med 39:1584–1593. doi: 10.1007/s00134-013-2973-1 PubMedCrossRefGoogle Scholar
  53. 53.
    Brown KL, MacLaren G, Marino BS (2013) Looking beyond survival rates: neurological outcomes after extracorporeal life support. Intensive Care Med 39:1870–1872. doi: 10.1007/s00134-013-3050-5 PubMedCrossRefGoogle Scholar
  54. 54.
    Visser IHE, Hazelzet JA, Albers MJIJ et al (2013) Mortality prediction models for pediatric intensive care: comparison of overall and subgroup specific performance. Intensive Care Med 39:942–950. doi: 10.1007/s00134-013-2857-4 PubMedCrossRefGoogle Scholar
  55. 55.
    Polito A, Piga S, Cogo PE et al (2013) Increased morbidity and mortality in very preterm/VLBW infants with congenital heart disease. Intensive Care Med 39:1104–1112. doi: 10.1007/s00134-013-2887-y PubMedCrossRefGoogle Scholar
  56. 56.
    Lopez-Herce J, del Castillo J, Matamoros M et al (2013) Factors associated with mortality in pediatric in-hospital cardiac arrest: a prospective multicenter multinational observational study. Intensive Care Med 39:309–318. doi: 10.1007/s00134-012-2709-7 PubMedCrossRefGoogle Scholar
  57. 57.
    Oualha M, Gatterre P, Boddaert N et al (2013) Early diffusion-weighted magnetic resonance imaging in children after cardiac arrest may provide valuable prognostic information on clinical outcome. Intensive Care Med 39:1306–1312. doi: 10.1007/s00134-013-2930-z PubMedCrossRefGoogle Scholar
  58. 58.
    Floh AA, La Rotta G, Wermelt JZ et al (2013) Validation of a new method based on ultrasound velocity dilution to measure cardiac output in paediatric patients. Intensive Care Med 39:926–933. doi: 10.1007/s00134-013-2848-5 PubMedCrossRefGoogle Scholar
  59. 59.
    De Luca D, Piastra M, Chidini G et al (2013) The use of the Berlin definition for acute respiratory distress syndrome during infancy and early childhood: multicenter evaluation and expert consensus. Intensive Care Med 39:2083–2091. doi: 10.1007/s00134-013-3110-x PubMedCrossRefGoogle Scholar
  60. 60.
    Van Berkel S, Binkhorst M, van Heijst AFJ et al (2013) Adapted ECMO criteria for newborns with persistent pulmonary hypertension after inhaled nitric oxide and/or high-frequency oscillatory ventilation. Intensive Care Med 39:1113–1120. doi: 10.1007/s00134-013-2907-y PubMedCrossRefGoogle Scholar
  61. 61.
    Dellaca RL, Veneroni C, Vendettuoli V et al (2013) Relationship between respiratory impedance and positive end-expiratory pressure in mechanically ventilated neonates. Intensive Care Med 39:511–519. doi: 10.1007/s00134-012-2795-6 PubMedCrossRefGoogle Scholar
  62. 62.
    Milesi C, Baleine J, Matecki S et al (2013) Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study. Intensive Care Med 39:1088–1094. doi: 10.1007/s00134-013-2879-y PubMedCrossRefGoogle Scholar
  63. 63.
    Essouri S, Laurent M, Chevret L et al (2014) Improved clinical and economic outcomes in severe bronchiolitis with pre-emptive nCPAP ventilatory strategy. Intensive Care Med 40:84–91. doi: 10.1007/s00134-013-3129-z PubMedCrossRefGoogle Scholar
  64. 64.
    Lee JH, Rehder KJ, Williford L et al (2013) Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of the literature. Intensive Care Med 39:247–257. doi: 10.1007/s00134-012-2743-5 PubMedCrossRefGoogle Scholar
  65. 65.
    Mayordomo-Colunga J, Pons M, Lopez Y et al (2013) Predicting non-invasive ventilation failure in children from the SpO(2)/FiO(2) (SF) ratio. Intensive Care Med 39:1095–1103. doi: 10.1007/s00134-013-2880-5 PubMedCrossRefGoogle Scholar
  66. 66.
    Caldarelli V, Borel JC, Khirani S et al (2013) Polygraphic respiratory events during sleep with noninvasive ventilation in children: description, prevalence, and clinical consequences. Intensive Care Med 39:739–746. doi: 10.1007/s00134-012-2806-7 PubMedCrossRefGoogle Scholar
  67. 67.
    Jouvet PA, Payen V, Gauvin F et al (2013) Weaning children from mechanical ventilation with a computer-driven protocol: a pilot trial. Intensive Care Med 39:919–925. doi: 10.1007/s00134-013-2837-8 PubMedCrossRefGoogle Scholar
  68. 68.
    Egelund TA, Wassil SK, Edwards EM et al (2013) High-dose magnesium sulfate infusion protocol for status asthmaticus: a safety and pharmacokinetics cohort study. Intensive Care Med 39:117–122. doi: 10.1007/s00134-012-2734-6 PubMedCrossRefGoogle Scholar
  69. 69.
    Deep A, Goonasekera CDA, Wang Y, Brierley J (2013) Evolution of haemodynamics and outcome of fluid-refractory septic shock in children. Intensive Care Med 39:1602–1609. doi: 10.1007/s00134-013-3003-z PubMedCrossRefGoogle Scholar
  70. 70.
    Paize F, Makwana N, Baines PB et al (2013) Diastolic dysfunction and N-terminal pro-brain natriuretic peptide in children with meningococcal sepsis. Intensive Care Med 39:1501–1502. doi: 10.1007/s00134-013-2948-2 PubMedCrossRefGoogle Scholar
  71. 71.
    Xu X-J, Tang Y-M, Liao C et al (2013) Inflammatory cytokine measurement quickly discriminates gram-negative from gram-positive bacteremia in pediatric hematology/oncology patients with septic shock. Intensive Care Med 39:319–326. doi: 10.1007/s00134-012-2752-4 PubMedCrossRefGoogle Scholar
  72. 72.
    Schlapbach LJ, Graf R, Woerner A et al (2013) Pancreatic stone protein as a novel marker for neonatal sepsis. Intensive Care Med 39:754–763. doi: 10.1007/s00134-012-2798-3 PubMedCrossRefGoogle Scholar
  73. 73.
    Spaeder MC (2013) Severe adenoviral respiratory infection in children. Intensive Care Med 39:1157–1158. doi: 10.1007/s00134-013-2893-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2014

Authors and Affiliations

  • Jean-Francois Timsit
    • 1
    • 21
    • 22
  • Giuseppe Citerio
    • 2
  • Jan Bakker
    • 3
  • Matteo Bassetti
    • 4
  • Dominique Benoit
    • 5
  • Maurizio Cecconi
    • 6
  • J. Randall Curtis
    • 7
  • Glenn Hernandez
    • 8
  • Margaret Herridge
    • 9
  • Samir Jaber
    • 10
  • Michael Joannidis
    • 11
  • Laurent Papazian
    • 12
  • Mark Peters
    • 13
  • Pierre Singer
    • 14
  • Martin Smith
    • 15
  • Marcio Soares
    • 16
  • Antoni Torres
    • 17
  • Antoine Vieillard-Baron
    • 18
  • Elie Azoulay
    • 19
    • 20
    Email author
  1. 1.Medical and Infectious Diseases ICU, Bichat HospitalParis Diderot UniversityParisFrance
  2. 2.NeuroIntensive Care Unit, Department of Anaesthesia and Critical CareOspedale San GerardoMonzaItaly
  3. 3.Erasmus University Medical CenterRotterdamThe Netherlands
  4. 4.Azienda Ospedaliera Universitaria Santa Maria della MisericordiaUdineItaly
  5. 5.Ghent University HospitalGhentBelgium
  6. 6.St George’s HospitalLondonUK
  7. 7.Harborview Medical CenterUniversity of WashingtonSeattleUSA
  8. 8.Pontificia Universidad CatólicaSantiago de ChileChile
  9. 9.University of TorontoTorontoCanada
  10. 10.Saint Eloi University HospitalMontpellierFrance
  11. 11.Medical UniversityInnsbruckAustria
  12. 12.Hôpital NordMarseilleFrance
  13. 13.Great Ormond St HospitalLondonUK
  14. 14.Beilinson HospitalTel AvivIsrael
  15. 15.University College London HospitalsLondonUK
  16. 16.D’Or Institute for Research and EducationRio de JaneiroBrazil
  17. 17.Hospital ClinicUniversity of Barcelona, Ciberes, IDIBAPSBarcelonaSpain
  18. 18.Hôpital Ambroise ParéParisFrance
  19. 19.Medical ICU, AP-HPHôpital Saint-LouisParisFrance
  20. 20.Faculté de Medicine, Sorbonne Paris-CitéUniversité Paris-DiderotParisFrance
  21. 21.Sorbonne Paris-CitéUniv Paris DiderotParisFrance
  22. 22.IAME Team 5, DeSCID: Decision SCiences in Infectious Diseases, Control and Care InsermUMR 1137 Paris Diderot UniversityParisFrance

Personalised recommendations