Skip to main content

Advertisement

Log in

Our study 20 years on: a randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients

  • My Paper 20 Years Later
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Introduction

Goal-directed perioperative therapy (GDT) is now part of a number of international perioperative protocols and, to some extent, seems to have come of age, but no research takes place in isolation and it is valuable to retrospectively look at influential papers to understand the context and influences of the time the research was undertaken.

Methods

One of the earliest publication of a randomised trial of GDT was a study we published 20 years ago in 1993, with co-author Professor E. David Bennett. In this article we describe the work leading up to our research, and look at the historical context of our study and choices we made in designing a protocol.

Conclusion

With 20 years of hindsight we consider the issues that have arisen following our study and place this into the whole of the debate around the use of GDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd O, Grounds RM, Bennett ED (1993) A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 270:2699–2707

    Article  PubMed  CAS  Google Scholar 

  2. Cuthbertson DP (1932) Observations on disturbances of metabolism produced by injuries to limbs. Q J Med 1:233–246

    CAS  Google Scholar 

  3. Clowes GHA Jr, Del Guercio LRM (1960) Circulatory response to trauma of surgical operations. Metabolism 9:67–81

    PubMed  CAS  Google Scholar 

  4. Brown RS, Shoemaker WC (1973) Sequential hemodynamic changes in patients with head injury: evidence for an early hemodynamic defect. Ann Surg 177:187–192

    Article  PubMed  CAS  Google Scholar 

  5. Shoemaker WC, Czer LSC (1979) Evaluation of the biologic importance of various haemodynamic and oxygen transport variables. Crit Care Med 7:424–429

    Article  PubMed  CAS  Google Scholar 

  6. Bland RD, Shoemaker WC, Abraham E, Cobo JC (1985) Haemodynamic and oxygen transport patterns in surviving and non-surviving patients. Crit Care Med 13:85–90

    Article  PubMed  CAS  Google Scholar 

  7. Shoemaker WC, Chang PC, Czer LSC, Bland R, Shabot MM, State D (1979) Cardiorespiratory monitoring in postoperative patients: 1 prediction of outcome and severity of illness. Crit Care Med 7:237–242

    Article  PubMed  CAS  Google Scholar 

  8. Bland RD, Shoemaker WC, Shabot MM (1978) Physiologic monitoring goals for the critically ill patient. Surg Gynecol Obstet 147:833–841

    PubMed  CAS  Google Scholar 

  9. Babu SC, Pathanjali Sharma PV, Raciti A et al (1980) Monitor-guided responses. Arch Surg 115:1384–1386

    Article  PubMed  CAS  Google Scholar 

  10. Whittmore AD, Clowes AW, Hechtman HB, Mannick JA (1980) Aortic aneurysm repair: reduced operative mortality associated with maintenance of optimal cardiac performance. Ann Surg 192:414–420

    Article  Google Scholar 

  11. Rao TLK, Jacobs KH, El-Etr AA (1983) Reinfarction following anesthesia in patients with myocardial infarction. Anesthesiology 59:499–505

    Article  PubMed  CAS  Google Scholar 

  12. Shoemaker WC, Appel PL, Waxman K, Schwartz S, Chang P (1982) Clinical trial of survivors cardiorespiratory patterns as therapeutic goals in critically ill postoperative patients. Crit Care Med 10:398–403

    Article  PubMed  CAS  Google Scholar 

  13. Shoemaker WC, Appel PL, Bland R (1983) Use of physiologic monitoring to predict outcome and to assist in clinical decisions in critically ill postoperative patients. Am J Surg 1:43–50

    Article  Google Scholar 

  14. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee T-S (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186

    Article  PubMed  CAS  Google Scholar 

  15. Cain SM (1977) Oxygen delivery and uptake in dogs during anemic and hypoxic hypoxia. J Appl Physiol 42:228–234

    PubMed  CAS  Google Scholar 

  16. Schumaker PT, Cain SM (1987) The concept of critical oxygen delivery. Int Care Med 13:223–229

    Article  Google Scholar 

  17. Boyd O, Grounds RM, Bennett ED (1992) The dependency of oxygen consumption on oxygen delivery in critically ill postoperative patients is mimicked by variations in sedation. Chest 101:1619–1624

    Article  PubMed  CAS  Google Scholar 

  18. Boyd O, Bennett ED (1992) Is oxygen consumption an important clinical target? In: Vincent JL (ed) Yearbook of intensive care and emergency medicine 1992. Springer, Berlin, pp 310–322

    Chapter  Google Scholar 

  19. Rhodes A, Lamb FJ, Malagon I, Newman PJ, Grounds RM, Bennett ED (1999) A prospective study of the use of a dobutamine stress test to identify outcome in patients with sepsis, severe sepsis, or septic shock. Crit Care Med 27:2361–2366

    Article  PubMed  CAS  Google Scholar 

  20. Vallet B, Chopin C, Curtis SE, Dupuis BA, Fournier F, Mehdaoui H, LeRoy B, Rime A, Santre C, Herbecy P, Her B (1993) Prognostic value of the dobutamine test in patients with sepsis syndrome and normal lactate values: a prospective multicenter study. Crit Care Med 21:1868–1875

    Article  PubMed  CAS  Google Scholar 

  21. De Backer D, Berre J, Zhang H, Kahn RJ, Vincent JL (1993) Relationship between oxygen uptake and oxygen delivery in septic patients: effects of prostacyclin versus dobutamine. Crit Care Med 21:1658–1664

    Article  PubMed  Google Scholar 

  22. Schultz RJ, Whitfield GF, LaMura JJ, Raciti A, Krishnamurthy S (1985) The role of physiologic monitoring in patients with fractures of the hip. J Trauma 25:309–316

    Article  PubMed  CAS  Google Scholar 

  23. Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130:423–429

    Article  PubMed  CAS  Google Scholar 

  24. Valentine RJ, Duke ML, Inman MH, Grayburn PA, Hagino RT, Kakish HB, Clagett GP (1998) Effectiveness of pulmonary artery catheters in aortic surgery: a randomized trial. J Vasc Surg 27:203–211, discussion 211–202

    Article  PubMed  CAS  Google Scholar 

  25. Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, McManus E (1999) Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ 318:1099–1103

    Article  PubMed  CAS  Google Scholar 

  26. Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, Laporta DP, Viner S, Passerini L, Devitt H, Kirby A, Jacka M (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348:5–14

    Article  PubMed  Google Scholar 

  27. Polonen P, Ruokonen E, Hippelainen M, Poyhonen M, Takala J (2000) A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 90:1052–1059

    Article  PubMed  CAS  Google Scholar 

  28. Berlauk JF, Abrams JH, Gilmour IJ, O’Connor SR, Knighton DR, Cerra FB (1991) Preoperative optimisation of cardiovascular hemodynamics improves outcome in peripheral vascular surgery. Ann Surg 214:289–297

    Article  PubMed  CAS  Google Scholar 

  29. Bender JS, Smith-Meek MA, Jones CE (1997) Routine pulmonary artery catheterization does not reduce morbidity and mortality of elective vascular surgery: results of a prospective, randomized trial. Ann Surg 226:229–236, discussion 236–227

    Article  PubMed  CAS  Google Scholar 

  30. Durham RM, Neunaber K, Mazuski JE, Shapiro MJ, Baue AE (1996) The use of oxygen consumption and delivery as endpoints for resuscitation in critically ill patients. J Trauma 41:32–39 discussion, 39–40

    Article  PubMed  CAS  Google Scholar 

  31. Ziegler DW, Wright JG, Choban PS, Flancbaum L (1997) A prospective randomized trial of preoperative “optimization” of cardiac function in patients undergoing elective peripheral vascular surgery. Surgery 122:584–592

    Article  PubMed  CAS  Google Scholar 

  32. Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. Br Med J 315:909–912

    Article  CAS  Google Scholar 

  33. Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, Dwane P, Glass PS (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97:820–826

    Article  PubMed  Google Scholar 

  34. Intensive Care National Audit and Research Centre (2013) Annual summary statistics. ICNARC. https://www.icnarc.org/CMS/ArticleDisplay.aspx?ID=6c3cc167-5865-dd11-9d92-0015c5e673e7&root=AUDIT&categoryID=3e54947c-6e64-dd11-9d92-0015c5e673e7. Accessed 17 July 2013

  35. Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, Grounds RM, Bennett ED (2006) Identification and characterisation of the high-risk surgical population in the United Kingdom. Critical Care 10:R81

    Article  PubMed  Google Scholar 

  36. Heyland DK, Cook DJ, King D, Kernerman P, Brun-Buisson C (1996) Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med 24:517–524

    Article  PubMed  CAS  Google Scholar 

  37. Challand C, Struthers R, Sneyd JR, Erasmus PD, Mellor N, Hosie KB, Minto G (2012) Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery. Br J Anaesth 108:53–62

    Article  PubMed  CAS  Google Scholar 

  38. Rhodes A, Cecconi M, Hamilton M, Poloniecki J, Woods J, Boyd O, Bennett D, Grounds RM (2010) Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Med 36:1327–1332

    Article  PubMed  Google Scholar 

  39. Juste RN, Lawson AD, Soni N (1996) Minimising cardiac anaesthetic risk: the tortoise or the hare? Anaesthesiology 51:255–262

    CAS  Google Scholar 

  40. Boyd O, Hayes M (1999) The oxygen trail—the goal. Br Med Bull 55:125–139

    Article  PubMed  CAS  Google Scholar 

  41. Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30:1686–1692

    Article  PubMed  Google Scholar 

  42. Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112:1392–1402

    Article  PubMed  Google Scholar 

  43. Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K, Optimisation Systematic Review Steering Group (2013) Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane Systematic Review. Br J Anaesth 111(4):535–548

    Google Scholar 

  44. Aya HD, Cecconi M, Hamilton M, Rhodes A (2013) Goal-directed therapy in cardiac surgery: a systematic review and meta-analysis. Br J Anaesth 110:510–517

    Article  PubMed  CAS  Google Scholar 

  45. Giglio MT, Marucci M, Testini M, Brienza N (2009) Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth 103:637–646

    Article  PubMed  CAS  Google Scholar 

  46. Enhanced Recovery Partnership Program (2010) Delivering enhanced recovery: helping patients get better sooner after surgery. Department of Health. http://www.nwlcn.nhs.uk/Downloads/Training-and-events/Delivering_Enhanced_Recovery_Helping_patients_get_better_sooner_after_surgery.pdf. Accessed 17 July 2013

  47. Department of Health NHS improvement and efficiency directorate Innovation and Service Improvement (2011) Innovation Health and Wealth—accelerating adoption and diffusion in the NHS. Department of Health. https://webarchive.nationalarchives.gov.uk/20130107105354/http://www.dh.gov.uk/prod_consum_dh/groups/dh_digitalassets/document/digitalasset/dh_134597.pdf. Accessed 17 July 2013

  48. Department of Health (2012) High impact innovations—intra-operative fluid management. Department of Health. http://iofm.innovation.nhs.uk/pg/dashboard. Accessed 1 June 2013

  49. Lassen K, Soop M, Nygren J, Cox PB, Hendry PO, Spies C, von Meyenfeldt MF, Fearon KC, Revhaug A, Norderval S, Ljungqvist O, Lobo DN, Dejong CH, Enhanced Recovery after Surgery (ERAS) Group (2009) Consensus review of optimum perioperative care in colorectal surgery: Enhanced Recovery after Surgery (ERAS) Group recommendations. Arch Surg 144:961–969

    Article  PubMed  Google Scholar 

  50. Gustafsson UO, Scott MJ, Schwenk W, Demartines N, Roulin D, Francis N, McNaught CE, MacFie J, Liberman AS, Soop M, Hill A, Kennedy RH, Lobo DN, Fearon K, Ljungqvist O (2012) Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS) Society recommendations. Clin Nutr 31:783–800

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

The authors state that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen Boyd.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, O., Grounds, R.M. Our study 20 years on: a randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. Intensive Care Med 39, 2107–2114 (2013). https://doi.org/10.1007/s00134-013-3098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-013-3098-2

Keywords

Navigation