Skip to main content
Log in

Rising serum sodium levels are associated with a concurrent development of metabolic alkalosis in critically ill patients

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Changes in electrolyte homeostasis are important causes of acid–base disorders. While the effects of chloride are well studied, only little is known of the potential contributions of sodium to metabolic acid–base state. Thus, we investigated the effects of intensive care unit (ICU)-acquired hypernatremia on acid–base state.

Methods

We included critically ill patients who developed hypernatremia, defined as a serum sodium concentration exceeding 149 mmol/L, after ICU admission in this retrospective study. Data on electrolyte and acid–base state in all included patients were gathered in order to analyze the effects of hypernatremia on metabolic acid–base state by use of the physical–chemical approach.

Results

A total of 51 patients were included in the study. The time of rising serum sodium and hypernatremia was accompanied by metabolic alkalosis. A transient increase in total base excess (standard base excess from 0.1 to 5.5 mmol/L) paralleled by a transient increase in the base excess due to sodium (base excess sodium from 0.7 to 4.1 mmol/L) could be observed. The other determinants of metabolic acid–base state remained stable. The increase in base excess was accompanied by a slight increase in overall pH (from 7.392 to 7.429, standard base excess from 0.1 to 5.5 mmol/L).

Conclusions

Hypernatremia is accompanied by metabolic alkalosis and an increase in pH. Given the high prevalence of hypernatremia, especially in critically ill patients, hypernatremic alkalosis should be part of the differential diagnosis of metabolic acid–base disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adrogue HJ, Madias NE (2000) Hypernatremia. N Engl J Med 342:1493–1499

    Article  PubMed  CAS  Google Scholar 

  2. Rose BD (2001) Clinical physiology of acid-base and electrolyte disorders. McGraw-Hill, New York

    Google Scholar 

  3. Himmelstein DU, Jones AA, Woolhandler S (1983) Hypernatremic dehydration in nursing home patients: an indicator of neglect. J Am Geriatr Soc 31:466–471

    PubMed  CAS  Google Scholar 

  4. Sterns RH (1999) Hypernatremia in the intensive care unit: instant quality–just add water. Crit Care Med 27:1041–1042

    Article  PubMed  CAS  Google Scholar 

  5. Lindner G, Funk GC, Schwarz C, Kneidinger N, Kaider A, Schneeweiss B, Kramer L, Druml W (2007) Hypernatremia in the critically ill is an independent risk factor for mortality. Am J Kidney Dis 50:952–957

    Article  PubMed  Google Scholar 

  6. Lindner G, Funk GC, Lassnigg A, Mouhieddine M, Ahmad SA, Schwarz C, Hiesmayr M (2010) Intensive care-acquired hypernatremia after major cardiothoracic surgery is associated with increased mortality. Intensive Care Med 36:1718–1723

    Article  PubMed  Google Scholar 

  7. Darmon M, Timsit JF, Francais A, Nguile-Makao M, Adrie C, Cohen Y, Garrouste-Orgeas M, Goldgran-Toledano D, Dumenil AS, Jamali S, Cheval C, Allaouchiche B, Souweine B, Azoulay E (2010) Association between hypernatraemia acquired in the ICU and mortality: a cohort study. Nephrol Dial Transpl 25:2510–2515

    Article  CAS  Google Scholar 

  8. Komjati M, Kastner G, Waldhausl W, Bratusch-Marrain P (1988) Detrimental effect of hyperosmolality on insulin-stimulated glucose metabolism in adipose and muscle tissue in vitro. Biochem Med Metab Biol 39:312–318

    Article  PubMed  CAS  Google Scholar 

  9. Komjati M, Kastner G, Waldhausl W, Bratusch-Marrain P (1989) Effect of hyperosmolality on basal and hormone-stimulated hepatic glucose metabolism in vitro. Eur J Clin Invest 19:128–134

    Article  PubMed  CAS  Google Scholar 

  10. Lenz K, Gossinger H, Laggner A, Druml W, Grimm G, Schneeweiss B (1986) Influence of hypernatremic-hyperosmolar state on hemodynamics of patients with normal and depressed myocardial function. Crit Care Med 14:913–914

    PubMed  CAS  Google Scholar 

  11. Kozeny GA, Murdock DK, Euler DE, Hano JE, Scanlon PJ, Bansal VK, Vertuno LL (1985) In vivo effects of acute changes in osmolality and sodium concentration on myocardial contractility. Am Heart J 109:290–296

    Article  PubMed  CAS  Google Scholar 

  12. Funk GC (2007) Stewart’s acid-base approach. Wien Klin Wochenschr 119:390–403

    Article  PubMed  CAS  Google Scholar 

  13. Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61:1444–1461

    Article  PubMed  CAS  Google Scholar 

  14. Hofmann-Kiefer KF, Chappell D, Jacob M, Schulke A, Conzen P, Rehm M (2009) Hypernatremic alkalosis. Possible counterpart of hyperchloremic acidosis in intensive care patients? Anaesthesist 58:1210–1215

    Article  PubMed  CAS  Google Scholar 

  15. Hoorn EJ, Betjes MG, Weigel J, Zietse R (2008) Hypernatraemia in critically ill patients: too little water and too much salt. Nephrol Dial Transpl 23:1562–1568

    Article  Google Scholar 

  16. Polderman KH, Schreuder WO, Strack van Schijndel RJ, Thijs LG (1999) Hypernatremia in the intensive care unit: an indicator of quality of care? Crit Care Med 27:1105–1108

    Article  PubMed  CAS  Google Scholar 

  17. Siggaard-Andersen O, Wimberley PD, Fogh-Andersen N, Gøthgen IH (1988) Measured and derived quantities with modern pH and blood gas equipment: calculation algorithms with 54 equations. Scand J Clin Lab Invest 148:7–15

    Google Scholar 

  18. Figge J, Mydosh T, Fencl V (1992) Serum proteins and acid-base equilibria: a follow-up. J Lab Clin Med 120:713–719

    PubMed  CAS  Google Scholar 

  19. Gilfix BM, Bique M, Magder S (1993) A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care 8:187–197

    Article  PubMed  CAS  Google Scholar 

  20. Zeger SL, Liang KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42:121–130

    Article  PubMed  CAS  Google Scholar 

  21. Kellum JA, Song M, Almasri E (2006) Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis. Chest 130:962–967

    Article  PubMed  CAS  Google Scholar 

  22. Kellum JA, Song M, Venkataraman R (2004) Effects of hyperchloremic acidosis on arterial pressure and circulating inflammatory molecules in experimental sepsis. Chest 125:243–248

    Article  PubMed  CAS  Google Scholar 

  23. Brill SA, Stewart TR, Brundage SI, Schreiber MA (2002) Base deficit does not predict mortality when secondary to hyperchloremic acidosis. Shock 17:459–462

    Article  PubMed  Google Scholar 

  24. Webster NR, Kulkarni V (1999) Metabolic alkalosis in the critically ill. Crit Rev Clin Lab Sci 36:497–510

    Article  PubMed  CAS  Google Scholar 

  25. Lindner G, Kneidinger N, Holzinger U, Druml W, Schwarz C (2009) Tonicity balance in patients with hypernatremia acquired in the intensive care unit. Am J Kidney Dis 54:674–679

    Article  PubMed  CAS  Google Scholar 

  26. Luke RG, Galla JH (2012) It is chloride depletion alkalosis, not contraction alkalosis. J Am Soc Nephrol 23:204–207

    Article  PubMed  CAS  Google Scholar 

  27. Funk GC, Lindner G, Druml W, Metnitz B, Schwarz C, Bauer P, Metnitz PG (2010) Incidence and prognosis of dysnatremias present on ICU admission. Intensive Care Med 36:304–311

    Article  PubMed  Google Scholar 

  28. Druml W, Kleinberger G, Lenz K, Laggner A, Schneeweiss B (1986) Fructose-induced hyperlactemia in hyperosmolar syndromes. Klin Wochenschr 64:615–618

    Article  PubMed  CAS  Google Scholar 

  29. Waldhäusl WK, Kleinberger G, Kastner G, Komjati M, Korn A, Nowotny P, Bratusch-Marrain PR (1979) Glucose utilization: effects of hyperosmolality and counter-regulatory hormones. Studies in vivo and in vitro. Acta Endocrinol 225:405

    Google Scholar 

  30. Fencl V, Rossing TH (1989) Acid-base disorders in critical care medicine. Annu Rev Med 40:17–29

    Article  PubMed  CAS  Google Scholar 

  31. Lawson NW, Butler GH 3rd, Ray CT (1973) Alkalosis and cardiac arrhythmias. Anesth Analg 52:951–964

    Article  PubMed  CAS  Google Scholar 

  32. Javaheri S, Shore NS, Rose B, Kazemi H (1982) Compensatory hypoventilation in metabolic alkalosis. Chest 81:296–301

    Article  PubMed  CAS  Google Scholar 

  33. Stone DJ (1962) Respiration in man during metabolic alkalosis. J Appl Physiol 17:33–37

    PubMed  CAS  Google Scholar 

  34. Wilson RF, Gibson D, Percinel AK, Ali MA, Baker G, LeBlanc LP, Lucas C (1972) Severe alkalosis in critically ill surgical patients. Arch Surg 105:197–203

    Article  PubMed  CAS  Google Scholar 

  35. Anderson LE, Henrich WL (1987) Alkalemia-associated morbidity and mortality in medical and surgical patients. South Med J 80:729–733

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

There was no financial support for the realization of this study.

Conflicts of interest

None of the authors has a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Lindner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindner, G., Schwarz, C., Grüssing, H. et al. Rising serum sodium levels are associated with a concurrent development of metabolic alkalosis in critically ill patients. Intensive Care Med 39, 399–405 (2013). https://doi.org/10.1007/s00134-012-2753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-012-2753-3

Keywords

Navigation