Advertisement

Intensive Care Medicine

, Volume 38, Issue 12, pp 2047–2054 | Cite as

Copeptin as a marker of relative arginine vasopressin deficiency after pediatric cardiac surgery

  • Christopher W. Mastropietro
  • Meredith Mahan
  • Kevin M. Valentine
  • Jeff A. Clark
  • Patrick C. Hines
  • Henry L. WaltersIII
  • Ralph E. Delius
  • Ashok P. Sarnaik
  • Noreen F. Rossi
Pediatric Original

Abstract

Purpose

Relative arginine vasopressin (AVP) deficiency after pediatric cardiac surgery has recently been described. Copeptin, a more stable and easily measured product of pro-AVP processing, may be a means of identifying these patients. We aimed to determine if copeptin was correlated with AVP in these children and whether it can be a surrogate marker of relative AVP deficiency.

Methods

Patients <6 years of age with basic Aristotle scores ≥7 requiring surgery with cardiopulmonary bypass were prospectively enrolled. Plasma AVP and copeptin concentrations were measured pre-cardiopulmonary bypass and 4 and 24 h post-cardiopulmonary bypass. Relative AVP deficiency was defined a priori based on our previous work as AVP <9.2 pg/ml at 4 h post-cardiopulmonary bypass.

Results

Of 41 children enrolled, relative AVP deficiency was present in 13 (32 %). AVP and copeptin concentrations were significantly lower in these 13 children at 4 h post-cardiopulmonary bypass as compared to the other 28 patients. A significant positive association between plasma AVP and copeptin concentrations over time was determined. Based on log-transformed analyses, a 1 % increase in plasma AVP led to a 0.19 % increase in copeptin. Further, copeptin <1.12 ng/ml at 4 h post-cardiopulmonary bypass had a sensitivity of 92 % and a negative predictive value of 95 % for relative AVP deficiency.

Conclusions

Plasma AVP and copeptin are positively associated in children undergoing cardiac surgery. Copeptin may represent a useful means of identifying relative AVP deficiency in these patients.

Keywords

Arginine vasopressin Copeptin Pediatrics Cardiopulmonary bypass Cardiac surgical procedures Postoperative care 

Notes

Acknowledgments

We acknowledge funding for this study from the Children’s Research Center of Michigan, Heart of a Child Foundation in Michigan, and a Merit Review Award by the Department of Veterans Affairs to N.F. Rossi. None of these funding sources had any role in the design; collection, analysis, and interpretation of data; writing of the manuscript; or decision to submit the manuscript for publication. We would also like to acknowledge the following: Nurse Clinicians Janet McGivern and Lori Martlock, and Nurse Practitioners Kristen Richards and Michele Dokas with enrollment; Perfusionists Grant Whittlesey and Doug Martin with preoperative blood collection; and Nurse Practitioners Lauren Kelm and Mary Caverly, and Pediatric ICU fellows Angela Mata, Suwannee Phumeetham, Hitesh Sandhu, Rekha Solomon, Monica Chauhan, and Keshava Narayanagowda with postoperative blood collection; and post-doctoral fellow Haiping Chen, who performed the vasopressin assays.

References

  1. 1.
    Rosenzweig EB, Starc TJ, Chen JM, Cullinane S, Timchak DM, Gersony WM, Landry DW, Galantowicz ME (1999) Intravenous arginine-vasopressin in children with vasodilatory shock after cardiac surgery. Circulation 100(19 Suppl):II182–186PubMedGoogle Scholar
  2. 2.
    Lechner E, Hofer A, Mair R, Moosbauer W, Sames-Dolzer E, Tulzer G (2007) Arginine-vasopressin in neonates with vasodilatory shock after cardiopulmonary bypass. Eur J Pediatr 166:1221–1227PubMedCrossRefGoogle Scholar
  3. 3.
    Mastropietro CW, Clark JA, Delius RE, Walters HL 3rd, Sarnaik AP (2008) Arginine vasopressin to manage hypoxemic infants after stage I palliation of single ventricle lesions. Pediatr Crit Care Med 9:506–510PubMedCrossRefGoogle Scholar
  4. 4.
    Jerath N, Frndova H, McCrindle BW, Gurofsky R, Humpl T (2008) Clinical impact of vasopressin infusion on hemodynamics, liver and renal function in pediatric patients. Intensive Care Med 34:1274–1280PubMedCrossRefGoogle Scholar
  5. 5.
    Sun LS, Dominguez C, Mallavaram NA, Quaegebeur JM (2005) Dysfunction of atrial and B-type natriuretic peptides in congenital univentricular defects. J Thorac Cardiovasc Surg 129:1104–1110PubMedCrossRefGoogle Scholar
  6. 6.
    Morrison WE, Simone S, Conway D, Tumulty J, Johnson C, Cardarelli M (2008) Levels of vasopressin in children undergoing cardiopulmonary bypass. Cardiol Young 18:135–140PubMedCrossRefGoogle Scholar
  7. 7.
    Mastropietro CW, Rossi NF, Clark JA, Chen H, Walters H 3rd, Delius R, Lieh-Lai M, Sarnaik AP (2010) Relative deficiency in arginine vasopressin in children after cardiopulmonary bypass. Crit Care Med 38:2052–2058PubMedGoogle Scholar
  8. 8.
    Choong K, Bohn D, Fraser DD, Gaboury I, Hutchison JS, Joffe AR, Litalien C, Menon K, McNamara P, Ward RE, Canadian Critical Care Trials Group (2009) Vasopressin in pediatric vasodilatory shock: a multicenter randomized controlled trial. Am J Respir Crit Care Med 180:632–639PubMedCrossRefGoogle Scholar
  9. 9.
    Robertson GL, Mahr EA, Athar S, Sinha T (1973) Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J Clin Invest 52:2340–2352PubMedCrossRefGoogle Scholar
  10. 10.
    Waters CB, Weinberg JE, Leake RD, Fisher DA (1982) Arginine vasopressin levels during a painful stimulus in infancy. Pediatr Res 16:569PubMedCrossRefGoogle Scholar
  11. 11.
    McIntosh N, Smith A (1985) Serial measurement of plasma arginine vasopressin in the newborn. Arch Dis Child 60:1031–1035PubMedCrossRefGoogle Scholar
  12. 12.
    Rittig S (2010) Neuroendocrine response to supine posture in healthy children and patients with nocturnal enuresis. Clin Endocrinol 72:781–786CrossRefGoogle Scholar
  13. 13.
    Choong K, Kissoon N (2008) Vasopressin in pediatric septic shock and cardiac arrest. Pediatr Crit Care Med 9:372–379PubMedCrossRefGoogle Scholar
  14. 14.
    Morgenthaler NG, Struck J, Alonso C, Bergmann A (2006) Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 52:112–119PubMedCrossRefGoogle Scholar
  15. 15.
    Jochberger S, Morgenthaler NG, Mayr VD, Luckner G, Wenzel V, Ulmer H, Schwarz S, Hasibeder WR, Friesenecker BE, Dünser MW (2006) Copeptin and arginine vasopressin concentrations in critically ill patients. J Clin Endocrinol Metab 91:4381–4386PubMedCrossRefGoogle Scholar
  16. 16.
    Jochberger S, Zitt M, Luckner G, Mayr VD, Wenzel V, Ulmer H, Morgenthaler NG, Hasibeder WR, Dünser MW (2009) Postoperative vasopressin and copeptin levels in noncardiac surgery patients: a prospective controlled trial. Shock 31:132–138PubMedCrossRefGoogle Scholar
  17. 17.
    Jochberger S, Velik-Salchner C, Mayr VD, Luckner G, Wenzel V, Falkensammer G, Ulmer H, Morgenthaler N, Hasibeder W, Dünser MW (2009) The vasopressin and copeptin response in patients with vasodilatory shock after cardiac surgery: a prospective, controlled study. Intensive Care Med 35:489–497PubMedCrossRefGoogle Scholar
  18. 18.
    Jochberger S, Dörler J, Luckner G, Mayr VD, Wenzel V, Ulmer H, Morgenthaler NG, Hasibeder WR, Dünser MW (2009) The vasopressin and copeptin response to infection, severe sepsis, and septic shock. Crit Care Med 37:476–482PubMedCrossRefGoogle Scholar
  19. 19.
    Torgersen C, Luckner G, Morgenthaler NG, Jochberger S, Schmittinger CA, Wenzel V, Hasibeder WR, Grander W, Dünser MW (2010) Plasma copeptin levels before and during exogenous arginine vasopressin infusion in patients with advanced vasodilatory shock. Minerva Anestesiol 76:905–912PubMedGoogle Scholar
  20. 20.
    Lacour-Gayet F, Jacobs JP, Clarke DR, Maruszewski B, Jacobs ML, O’Brien SM, Mavroudis C (2004) The Aristotle score: a complexity-adjusted method to evaluate surgical results. Eur J Cardiothorac Surg 25:911–924PubMedCrossRefGoogle Scholar
  21. 21.
    Wernovsky G, Wypij D, Jonas RA, Mayer JE Jr, Hanley FL, Hickey PR, Walsh AZ, Chang AC, Castañeda AR, Newburger JW, Wessel D (1995) Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation 92:2226–2235PubMedCrossRefGoogle Scholar
  22. 22.
    Miller TR, Handelman WA, Arnold PE, McDonald KM, Molinoff PB, Schrier RW (1979) Effect of central catecholamine depletion on the osmotic and non-osmotic stimulation of vasopressin (antidiuretic hormone) in the rat. J Clin Invest 64:1599–1607PubMedCrossRefGoogle Scholar
  23. 23.
    Rossi NF, Schrier RW (1989) Anti-calmodulin agents affect osmotic and angiotensin II- induced vasopressin release. Am J Physiol 256:E516–E523PubMedGoogle Scholar
  24. 24.
    Twisk JWR (2003) Applied longitudinal data analysis for epidemiology: a practical guide. Cambridge University Press, CambridgeGoogle Scholar
  25. 25.
    Walker BR, Haynes J Jr, Wang HL, Voelkel NF (1989) Vasopressin-induced pulmonary vasodilation in rats. Am J Physiol 257:H415–H422PubMedGoogle Scholar
  26. 26.
    Evora PR, Pearson PJ, Schaff HV (1993) Arginine vasopressin induces endothelium-dependent vasodilatation of the pulmonary artery. V1-receptor-mediated production of nitric oxide. Chest 103:1241–1245PubMedCrossRefGoogle Scholar
  27. 27.
    Thibonnier M, Conarty DM, Preston JA, Plesnicher CL, Dweik RA, Erzurum SC (1999) Human vascular endothelial cells express oxytocin receptors. Endocrinology 140:1301–1309PubMedCrossRefGoogle Scholar
  28. 28.
    Zenteno-Savin T, Sada-Ovalle I, Ceballos G, Rubio R (2000) Effects of arginine vasopressin in the heart are mediated by specific intravascular endothelial receptors. Eur J Pharmacol 410:15–23PubMedCrossRefGoogle Scholar
  29. 29.
    Mei Q, Liang BT (2001) P2 purinergic receptor activation enhances cardiac contractility in isolated rat and mouse hearts. Am J Physiol Heart Circ Physiol 281:H334–H341PubMedGoogle Scholar
  30. 30.
    Tayama E, Ueda T, Shojima T, Akasu K, Oda T, Fukunaga S, Akashi H, Aoyagi S (2007) Arginine vasopressin is an ideal drug after cardiac surgery for the management of low systemic vascular resistant hypotension concomitant with pulmonary hypertension. Interact Cardiovasc Thorac Surg 6:715–719PubMedCrossRefGoogle Scholar
  31. 31.
    Killinger JS, Hsu DT, Schleien CL, Mosca RS, Hardart GE (2009) Children undergoing heart transplant are at increased risk for postoperative vasodilatory shock. Pediatr Crit Care Med 10:335–340PubMedCrossRefGoogle Scholar
  32. 32.
    Seferian KR, Tamm NN, Semenov AG, Mukharyamova KS, Tolstaya AA, Koshkina EV, Kara AN, Krasnoselsky MI, Apple FS, Esakova TV, Filatov VL, Katrukha AG (2007) The brain natriuretic peptide (BNP) precursor is the major immunoreactive form of BNP in patients with heart failure. Clin Chem 53:866–873PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2012

Authors and Affiliations

  • Christopher W. Mastropietro
    • 1
  • Meredith Mahan
    • 2
  • Kevin M. Valentine
    • 1
  • Jeff A. Clark
    • 1
  • Patrick C. Hines
    • 1
  • Henry L. WaltersIII
    • 3
  • Ralph E. Delius
    • 3
  • Ashok P. Sarnaik
    • 1
  • Noreen F. Rossi
    • 4
  1. 1.Department of Pediatrics, Division of Critical CareWayne State University/Children’s Hospital of MichiganDetroitUSA
  2. 2.Department of Public Health Science, Division of BiostatisticsHenry Ford Health SystemDetroitUSA
  3. 3.Department of Cardiovascular SurgeryWayne State University/Children’s Hospital of MichiganDetroitUSA
  4. 4.Departments of Internal Medicine and PhysiologyWayne State University/John D. Dingell VAMCDetroitUSA

Personalised recommendations