Skip to main content

Advertisement

Log in

Olprinone attenuates the development of ischemia/reperfusion injury of the gut

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Splanchnic artery occlusion (SAO) shock is a severe form of circulatory shock produced by ischemia and reperfusion of the splanchnic organs. The occlusion and reperfusion of the splanchnic arteries causes activation and adhesion of polymorphonuclear neutrophils (PMNs), release of proinflammatory substances and the formation of both species of oxygen and nitrogen derivatives free radicals. Olprinone is a specific phosphodiesterase-III inhibitor that has many properties; one of which is anti-inflammatory actions at therapeutic concentrations clinically used for heart failure. In this study, we wanted to evaluate the pharmacological action of olprinone (a PDEIII inhibitor) on SAO shock in mice.

Methods

SAO shock was induced by clamping both the superior mesenteric artery and the celiac trunk, resulting in a total occlusion of these arteries for 30 min. After this period of occlusion, the clamps were removed. Olprinone was given at a dose of 0.2 mg/kg i.p. 15 min before reperfusion.

Results

Our results indicated that olprinone up-regulated cAMP in injured ileum tissue, and decreased the ileum tissue damage after 1 h of reperfusion in SAO shock mice. Moreover, olprinone decreased NF-κB expression; the nitration of tyrosine residues; the phosphorylation of p38 MAPK and JNK; cytokine production (TNF-α and IL-1β); ICAM-1 and P-selectin expression and apoptosis in the injured ileum.

Conclusions

These results could imply a future use of olprinone in the therapy of ischemia and reperfusion shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mizushige K, Ueda T, Yukiiri K, Suzuki H (2002) Olprinone: a phosphodiesterase III inhibitor with positive inotropic and vasodilator effects. Cardiovasc Drug Rev 20:163–174

    CAS  PubMed  Google Scholar 

  2. Sanada S, Kitakaze M, Papst PJ, Asanuma H, Node K, Takashima S, Asakura M, Ogita H, Liao Y, Sakata Y, Ogai A, Fukushima T, Yamada J, Shinozaki Y, Kuzuya T, Mori H, Terada N, Hori M (2001) Cardioprotective effect afforded by transient exposure to phosphodiesterase III inhibitors: the role of protein kinase A and p38 mitogen-activated protein kinase. Circulation 104:705–710

    Article  CAS  PubMed  Google Scholar 

  3. Ueda T, Mizushige K, Yukiiri K, Nishiyama Y, Kohno M (2004) The cerebrovascular dilatation effects of olprinone, a phosphodiesterase III inhibitor, in comparison with acetazolamide––a pilot study. Clin Neurol Neurosurg 106:284–288

    Article  PubMed  Google Scholar 

  4. Tajimi M, Ozaki H, Sato K, Karaki H (1991) Effect of a novel inhibitor of cyclic AMP phosphodiesterase, E-1020, on cytosolic Ca++ level and contraction in vascular smooth muscle. Naunyn Schmiedebergs Arch of Pharmacol 344:602–610

    CAS  Google Scholar 

  5. Okuda K, Kudo H, Ohishi K, Kitano T, Imasaka H, Noguchi T (1997) Effects of olprinone on IL-6 and IL-10 production during and after cardiac surgery. Masui 46:1580–1584

    CAS  PubMed  Google Scholar 

  6. Altura BM, Gebrewold A, Burton RW (1985) Reactive hyperemic responses of single arterioles are attenuated markedly after intestinal ischemia, endotoxemia and traumatic shock: possible role of endothelial cells. Microcirc Endothelium Lymphatics 2:3–14

    CAS  PubMed  Google Scholar 

  7. Carey C, Siegfried MR, Ma XL, Weyrich AS, Lefer AM (1992) Antishock and endothelial protective actions of a NO donor in mesenteric ischemia and reperfusion. Circ Shock 38:209–216

    CAS  PubMed  Google Scholar 

  8. Zingarelli B, Squadrito F, Ioculano M, Altavilla D, Bussolino F, Campo GM, Caputi AP (1992) Platelet activating factor interaction with tumor necrosis factor and myocardial depressant factor in splanchnic artery occlusion shock. Eur J Pharmacol 222:13–19

    Article  CAS  PubMed  Google Scholar 

  9. Lefer AM, Lefer DJ (1993) Pharmacology of the endothelium in ischemia-reperfusion and circulatory shock. Annu Rev Pharmacol Toxicol 33:71–90

    Article  CAS  PubMed  Google Scholar 

  10. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163

    Article  CAS  PubMed  Google Scholar 

  11. Parks DA, Granger DN (1986) Contributions of ischemia and reperfusion to mucosal lesion formation. Am J Physiol 250:G749–G753

    CAS  PubMed  Google Scholar 

  12. Masini E, Cuzzocrea S, Mazzon E, Muia C, Vannacci A, Fabrizi F, Bani D (2006) Protective effects of relaxin in ischemia/reperfusion-induced intestinal injury due to splanchnic artery occlusion. Br J Pharmacol 148:1124–1132

    Article  CAS  PubMed  Google Scholar 

  13. Husted TL, Lentsch AB (2006) The role of cytokines in pharmacological modulation of hepatic ischemia/reperfusion injury. Curr Pharm Des 12:2867–2873

    Article  CAS  PubMed  Google Scholar 

  14. Frangogiannis NG (2007) Chemokines in ischemia and reperfusion. Thromb Haemost 97:738–747

    CAS  PubMed  Google Scholar 

  15. Martinez-Mier G, Toledo-Pereyra LH, Ward PA (2000) Adhesion molecules in liver ischemia and reperfusion. J Surg Res 94:185–194

    Article  CAS  PubMed  Google Scholar 

  16. Serracino-Inglott F, Habib NA, Mathie RT (2001) Hepatic ischemia-reperfusion injury. Am J Surg 181:160–166

    Article  CAS  PubMed  Google Scholar 

  17. Ayub K, Serracino-Inglott F, Williamson RC, Mathie RT (2001) Expression of inducible nitric oxide synthase contributes to the development of pancreatitis following pancreatic ischaemia and reperfusion. Br J surg 88:1189–1193

    Article  CAS  PubMed  Google Scholar 

  18. Mizutani A, Murakami K, Okajima K, Kira S, Mizutani S, Kudo K, Takatani J, Goto K, Hattori S, Noguchi T (2005) Olprinone reduces ischemia/reperfusion-induced acute renal injury in rats through enhancement of cAMP. Shock 24:281–287

    Article  CAS  PubMed  Google Scholar 

  19. Miyakawa H, Kira S, Okuda K, Takeshima N, Mori M, Noguchi T (2008) Olprinone decreases elevated concentrations of cytokine-induced neutrophil chemoattractant-1 in septic rats. J Anesth 22:27–31

    Article  PubMed  Google Scholar 

  20. Roviezzo F, Cuzzocrea S, Di Lorenzo A, Brancaleone V, Mazzon E, Di Paola R, Bucci M, Cirino G (2007) Protective role of PI3-kinase-Akt-eNOS signalling pathway in intestinal injury associated with splanchnic artery occlusion shock. Br J Pharmacol 151:377–383

    Article  CAS  PubMed  Google Scholar 

  21. Yamaguchi K, Kawahara T, Kumakura S, Hua J, Kugimiya T, Nagaoka I, Inada E (2009) Effect of olprinone a phosphodiesterase III inhibitor, on hepatic ischemiareperfusion injury in rats. Shock, Augusta

    Google Scholar 

  22. Genovese T, Esposito E, Mazzon E, Crisafulli C, Paterniti I, Di Paola R, Galuppo M, Bramanti P, Cuzzocrea S (2009) PPAR-? modulate the anti-inflammatory effect of glucocorticoids in the secondary damage in experimental spinal cord trauma. Pharmacol Res 59:338–350

    Article  CAS  PubMed  Google Scholar 

  23. Cuzzocrea S, Zingarelli B, Caputi AP (1998) Role of peroxynitrite and poly (ADP-ribosyl) synthetase activation in cardiovascular derangement induced by zymosan in the rat. Life Sci 63:923–933

    Article  CAS  PubMed  Google Scholar 

  24. Cuzzocrea S, Zingarelli B, Caputi AP (1998) Role of constitutive nitric oxide synthase and peroxynitrite production in a rat model of splanchnic artery occlusion shock. Life Sci 63:789–799

    Article  CAS  PubMed  Google Scholar 

  25. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  26. Cuzzocrea S, Mazzon E, De Sarro A, Caputi AP (2000) Role of free radicals and poly (ADP-ribose) synthetase in intestinal tight junction permeability. Mol Med 6:766–778

    CAS  PubMed  Google Scholar 

  27. Anas C, Ozaki T, Maruyama S, Yamamoto T, Zu Gotoh M, Ono Y, Matsuo S (2007) Effects of olprinone, a phosphodiesterase III inhibitor, on ischemic acute renal failure. Int J Urol 14:219–225

    Article  CAS  PubMed  Google Scholar 

  28. Matsumoto T, Kobayashi T, Kamata K (2003) Alterations in EDHF-type relaxation and phosphodiesterase activity in mesenteric arteries from diabetic rats. Am J Physiol Heart Circ Physiol 285:H283–H291

    CAS  PubMed  Google Scholar 

  29. Zager RA, Johnson AC, Hanson SY, Lund S (2005) Ischemic proximal tubular injury primes mice to endotoxin-induced TNF-alpha generation and systemic release. Am J Physiol 289:F289–F297

    Article  CAS  Google Scholar 

  30. Koga S, Morris S, Ogawa S, Liao H, Bilezikian JP, Chen G, Thompson WJ, Ashikaga T, Brett J, Stern DM et al (1995) TNF modulates endothelial properties by decreasing cAMP. Am J Physiol 268:C1104–C1113

    CAS  PubMed  Google Scholar 

  31. Rahman A, Anwar KN, Minhajuddin M, Bijli KM, Javaid K, True AL, Malik AB (2004) cAMP targeting of p38 MAP kinase inhibits thrombin-induced NF-kappaB activation and ICAM-1 expression in endothelial cells. Am J Physiol Lung Cell Mol Physiol 287:L1017–L1024

    Article  CAS  PubMed  Google Scholar 

  32. Aizawa T, Wei H, Miano JM, Abe J, Berk BC, Yan C (2003) Role of phosphodiesterase 3 in NO/cGMP-mediated antiinflammatory effects in vascular smooth muscle cells. Circ Res 93:406–413

    Article  CAS  PubMed  Google Scholar 

  33. Salvemini D, Muscoli C, Riley DP, Cuzzocrea S (2002) Superoxide dismutase mimetics. Pulm Pharmacol Ther 15:439–447

    Article  CAS  PubMed  Google Scholar 

  34. Hassa PO, Hottiger MO (2002) The functional role of poly (ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci 59:1534–1553

    Article  CAS  PubMed  Google Scholar 

  35. Giovannelli L, Cozzi A, Guarnieri I, Dolara P, Moroni F (2002) Comet assay as a novel approach for studying DNA damage in focal cerebral ischemia: differential effects of NMDA receptor antagonists and poly (ADP-ribose) polymerase inhibitors. J Cereb Blood Flow Metab 22:697–704

    Article  CAS  PubMed  Google Scholar 

  36. Itoh G, Tamura J, Suzuki M, Suzuki Y, Ikeda H, Koike M, Nomura M, Jie T, Ito K (1995) DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 146:1325–1331

    CAS  PubMed  Google Scholar 

  37. Noda T, Iwakiri R, Fujimoto K, Matsuo S, Aw TY (1998) Programmed cell death induced by ischemia-reperfusion in rat intestinal mucosa. Am J Physiol 274:G270–G276

    CAS  PubMed  Google Scholar 

  38. Fukuda K, Kojiro M, Chiu JF (1993) Induction of apoptosis by transforming growth factor-beta 1 in the rat hepatoma cell line McA-RH7777: a possible association with tissue transglutaminase expression. Hepatology 18:945–953

    Article  CAS  PubMed  Google Scholar 

  39. Masini E, Cuzzocrea S, Bani D, Mazzon E, Muja C, Mastroianni R, Fabrizi F, Pietrangeli P, Marcocci L, Mondovi B, Mannaioni PF, Federico R (2007) Beneficial effects of a plant histaminase in a rat model of splanchnic artery occlusion and reperfusion. Shock 27:409–415

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Cuzzocrea.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crisafulli, C., Mazzon, E., Galuppo, M. et al. Olprinone attenuates the development of ischemia/reperfusion injury of the gut. Intensive Care Med 36, 1235–1247 (2010). https://doi.org/10.1007/s00134-010-1798-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-010-1798-4

Keywords

Navigation