Skip to main content
Log in

Bacillus anthracis cell wall produces injurious inflammation but paradoxically decreases the lethality of anthrax lethal toxin in a rat model

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objectives

The in vivo inflammatory effects of the Bacillus anthracis cell wall are unknown. We therefore investigated these effects in rats and, for comparison, those of known inflammatory stimulants, Staphylococcus aureus cell wall or lipopolysaccharide (LPS).

Method and Results

Sprague–Dawley rats (n = 103) were challenged with increasing B. anthracis cell wall doses (10, 20, 40, 80, or 160 mg/kg) or diluent (control) as a bolus or 24-h infusion. The three highest bolus doses were lethal (20–64% lethality rates) as were the two highest infused doses (13% with each). Comparisons among lethal or nonlethal doses on other measured parameters were not significantly different, and these were combined for analysis. Over the 24 h after challenge initiation with lethal bolus or infusion, compared to controls, ten inflammatory cytokines and NO levels were increased and circulating neutrophils and platelets decreased (P ≤ 0.05). Changes with lethal doses were greater than changes with nonlethal doses (P ≤ 0.01). Lethal bolus or infusion doses produced hypotension or hypoxemia, respectively (P ≤ 0.05). The effects with B. anthracis cell wall were similar to those of S. aureus cell wall or LPS. However, paradoxically administration of B. anthracis cell wall or LPS decreased the lethality of concurrently administered B. anthracis lethal toxin (P < 0.0001 and 0.04, respectively).

Conclusion

B. anthracis cell wall has the potential to produce inflammatory injury during anthrax infection clinically. However, understanding why cell wall or LPS paradoxically reduced lethality with lethal toxin may help understand this toxin’s pathogenic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kengatharan KM, De Kimpe S, Robson C, Foster SJ, Thiemermann C (1998) Mechanism of gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. J Exp Med 188:305–315

    Article  CAS  PubMed  Google Scholar 

  2. Myhre AE, Aasen AO, Thiemermann C, Wang JE (2006) Peptidoglycan—an endotoxin in its own right? Shock 25:227–235

    Article  CAS  PubMed  Google Scholar 

  3. Ryu YH, Baik JE, Yang JS, Kang SS, Im J, Yun CH, Kim DW, Lee K, Chung DK, Ju HR, Han SH (2009) Differential immunostimulatory effects of gram-positive bacteria due to their lipoteichoic acids. Int Immunopharmacol 9:127–133

    Article  CAS  PubMed  Google Scholar 

  4. Popov SG, Villasmil R, Bernardi J, Grene E, Cardwell J, Popova T, Wu A, Alibek D, Bailey C, Alibek K (2002) Effect of Bacillus anthracis lethal toxin on human peripheral blood mononuclear cells. FEBS Lett 527:211–215

    Article  CAS  PubMed  Google Scholar 

  5. Triantafilou M, Uddin A, Maher S, Charalambous N, Hamm TS, Alsumaiti A, Triantafilou K (2007) Anthrax toxin evades toll-like receptor recognition, whereas its cell wall components trigger activation via TLR2/6 heterodimers. Cell Microbiol 9:2880–2892

    Article  CAS  PubMed  Google Scholar 

  6. Hsu LC, Ali SR, McGillivray S, Tseng PH, Mariathasan S, Humke EW, Eckmann L, Powell JJ, Nizet V, Dixit VM, Karin M (2008) A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA 105:7803–7808

    Article  CAS  PubMed  Google Scholar 

  7. Cui X, Moayeri M, Li Y, Li X, Haley M, Fitz Y, Correa-Araujo R, Banks SM, Leppla SH, Eichacker PQ (2004) Lethality during continuous anthrax lethal toxin infusion is associated with circulatory shock but not inflammatory cytokine or nitric oxide release in rats. Am J Physiol Regul Integr Comp Physiol 286:R699–R709

    CAS  PubMed  Google Scholar 

  8. Sherer K, Li Y, Cui X, Eichacker PQ (2007) Lethal and edema toxins in the pathogenesis of Bacillus anthracis septic shock: implications for therapy. Am J Respir Crit Care Med 175:211–221

    Article  CAS  PubMed  Google Scholar 

  9. Medvedev AE, Flo T, Ingalls RR, Golenbock DT, Teti G, Vogel SN, Espevik T (1998) Involvement of CD14 and complement receptors CR3 and CR4 in nuclear factor-kappaB activation and TNF production induced by lipopolysaccharide and group B streptococcal cell walls. J Immunol 160:4535–4542

    CAS  PubMed  Google Scholar 

  10. Cui X, Li Y, Li X, Laird MW, Subramanian M, Moayeri M, Leppla SH, Fitz Y, Su J, Sherer K, Eichacker PQ (2007) Bacillus anthracis edema and lethal toxin have different hemodynamic effects but function together to worsen shock and outcome in a rat model. J Infect Dis 195:572–580

    Article  CAS  PubMed  Google Scholar 

  11. Parent C, Eichacker PQ (1999) Neutrophil and endothelial cell interactions in sepsis. The role of adhesion molecules. Infect Dis Clin North Am 13:427–447

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Ma S (2008) The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emerg Med 26:711–715

    Article  PubMed  Google Scholar 

  13. Assreuy J (2006) Nitric oxide and cardiovascular dysfunction in sepsis. Endocr Metab Immune Disord Drug Targets 6:165–173

    CAS  PubMed  Google Scholar 

  14. Aldridge AJ (2002) Role of the neutrophil in septic shock and the adult respiratory distress syndrome. Eur J Surg 168:204–214

    Article  CAS  PubMed  Google Scholar 

  15. Ware LB (2006) Pathophysiology of acute lung injury and the acute respiratory distress syndrome. Semin Respir Crit Care Med 27:337–349

    Article  PubMed  Google Scholar 

  16. Albrecht MT, Li H, Williamson ED, LeButt CS, Flick-Smith HC, Quinn CP, Westra H, Galloway D, Mateczun A, Goldman S, Groen H, Baillie LW (2007) Human monoclonal antibodies against anthrax lethal factor and protective antigen act independently to protect against Bacillus anthracis infection and enhance endogenous immunity to anthrax. Infect Immun 75:5425–5433

    Article  CAS  PubMed  Google Scholar 

  17. Cui X, Li Y, Moayeri M, Choi GH, Subramanian GM, Li X, Haley M, Fitz Y, Feng J, Banks SM, Leppla SH, Eichacker PQ (2005) Late treatment with a protective antigen-directed monoclonal antibody improves hemodynamic function and survival in a lethal toxin-infused rat model of anthrax sepsis. J Infect Dis 191:422–434

    Article  CAS  PubMed  Google Scholar 

  18. Moayeri M, Haines D, Young HA, Leppla SH (2003) Bacillus anthracis lethal toxin induces TNF-alpha-independent hypoxia-mediated toxicity in mice. J Clin Invest 112:670–682

    CAS  PubMed  Google Scholar 

  19. Stearns-Kurosawa DJ, Lupu F, Taylor FB Jr, Kinasewitz G, Kurosawa S (2006) Sepsis and pathophysiology of anthrax in a nonhuman primate model. Am J Pathol 169:433–444

    Article  CAS  PubMed  Google Scholar 

  20. Smith H, Keppie J, Stanley JL (1954) Observations on the cause of death in experimental anthrax. Lancet 267:474–476

    Article  CAS  PubMed  Google Scholar 

  21. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872

    Article  CAS  PubMed  Google Scholar 

  22. Mesnage S, Fouet A (2002) Plasmid-encoded autolysin in Bacillus anthracis: modular structure and catalytic properties. J Bacteriol 184:331–334

    Article  CAS  PubMed  Google Scholar 

  23. Guarner J, Jernigan JA, Shieh WJ, Tatti K, Flannagan LM, Stephens DS, Popovic T, Ashford DA, Perkins BA, Zaki SR (2003) Pathology and pathogenesis of bioterrorism-related inhalational anthrax. Am J Pathol 163:701–709

    CAS  PubMed  Google Scholar 

  24. Holty JE, Bravata DM, Liu H, Olshen RA, McDonald KM, Owens DK (2006) Systematic review: a century of inhalational anthrax cases from 1900 to 2005. Ann Intern Med 144:270–280

    PubMed  Google Scholar 

  25. Quintiliani R Jr, Quintiliani R (2003) Inhalational anthrax and bioterrorism. Curr Opin Pulm Med 9:221–226

    Article  PubMed  Google Scholar 

  26. Edward N. Martin J, Barnett R. Nathan, and William M. Scheld (2003) Lipoteichoic acid (LTA) decreases anthrax lethal toxin (LeTx) induced mortality in C57bl/6 mice. Programs and abstracts of the annual meeting of IDSA:150

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Q. Eichacker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 215 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, X., Su, J., Li, Y. et al. Bacillus anthracis cell wall produces injurious inflammation but paradoxically decreases the lethality of anthrax lethal toxin in a rat model. Intensive Care Med 36, 148–156 (2010). https://doi.org/10.1007/s00134-009-1643-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-009-1643-9

Keywords

Navigation