Skip to main content
Log in

Systemic and microcirculatory responses to progressive hemorrhage

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To compare systemic hemodynamics with microcirculatory changes at different vascular beds during progressive hemorrhage.

Setting

University-based research laboratory.

Subjects

Twelve anesthetized, mechanically ventilated sheep.

Interventions

Sheep were randomly assigned to HEMORRHAGE or CONTROL group. In the HEMORRHAGE group (n = 8), three stepwise bleedings of 5 ml/kg at 30-min intervals were performed to add up 15 ml/kg. In the CONTROL group (n = 4), sheep had the same surgical preparation but were not bled.

Measurements and main results

Progressive bleeding decreased cardiac output, and superior mesenteric artery blood flow, and systemic and intestinal oxygen transports from the first step of bleeding whereas systemic and intestinal oxygen consumption remained unchanged. Mean arterial blood pressure, arterial pH and base excess, and intramucosal-arterial PCO2 were only significantly modified in the last step of bleeding. Arterial lactate increased and sublingual, and intestinal serosal and mucosal capillary microvascular flow indexes and red blood cell velocities progressively decreased after the first step of bleeding (3.0 ± 0.1 vs. 2.3 ± 0.4, 3.2 ± 0.2 vs. 2.4 ± 0.6, 3.0 ± 0.0 vs. 2.0 ± 0.2, and 1,082 ± 29 vs. 977 ± 79, 1,042 ± 24 vs. 953 ± 60, 287 ± 65 vs. 262 ± 16 μm/s; P < 0.05 for all).

Conclusions

Alterations in sublingual, intestinal microcirculation, and arterial lactate simultaneously arose from the first step of bleeding. The microcirculatory changes were identified either by semi-quantitative flow index or by quantitative red blood cell velocity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Crowell JW, Smith EE (1964) Oxygen deficit and irreversible hemorrhagic shock. Am J Physiol 206:313–316

    PubMed  CAS  Google Scholar 

  2. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, Early Goal-Directed Therapy Collaborative Group (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  3. Hamilton-Davies C, Mythen MG, Salmon JB, Jacobson D, Shukla A, Webb AR (1997) Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry. Intensive Care Med 23:276–281

    Article  PubMed  CAS  Google Scholar 

  4. Povoas HP, Weil MH, Tang W, Moran B, Kamohara T, Bisera J (2000) Comparisons between sublingual and gastric tonometry during hemorrhagic shock. Chest 118:1127–1132

    Article  PubMed  CAS  Google Scholar 

  5. Weil MH, Afifi AA (1970) Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation 41:989–1001

    PubMed  CAS  Google Scholar 

  6. Davis JW, Shackford SR, Mackersie RC, Hoyt DB (1988) Base deficit as a guide to volume resuscitation. J Trauma 28:1464–1467

    Article  PubMed  CAS  Google Scholar 

  7. Sinaasappel M, van Iterson M, Ince C (1999) Microvascular oxygen pressure in the pig intestine during haemorrhagic shock and resuscitation. J Physiol 514:245–253

    Article  PubMed  CAS  Google Scholar 

  8. Fruchterman TM, Spain DA, Wilson MA, Harris PD, Garrison RN (1998) Complement inhibition prevents gut ischemia and endothelial cell dysfunction after hemorrhage/resuscitation. Surgery 124:782–791

    Article  PubMed  CAS  Google Scholar 

  9. Watkins JM, Spain DA, Krysztopik RJ, Downard PJ, Wilson MA, Garrison RN (1996) Heparan preserves intestinal perfusion after hemorrhage and resuscitation. J Surg Res 66:154–158

    Article  PubMed  CAS  Google Scholar 

  10. Zhao KS, Junker D, Delano FA, Zweifach BW (1985) Microvascular adjustments during irreversible hemorrhagic shock in rat skeletal muscle. Microvasc Res 30:143–153

    Article  PubMed  CAS  Google Scholar 

  11. Colantuoni A, Bertuglia S, Intaglietta M (1985) Microvessel diameter changes during hemorrhagic shock in unanesthetized hamsters. Microvasc Res 30:133–142

    Article  PubMed  CAS  Google Scholar 

  12. Morini S, Yacoub W, Rastellini C, Gaudio E, Watkins SC, Cicalese L (2000) Intestinal microvascular patterns during hemorrhagic shock. Dig Dis Sci 45:710–722

    Article  PubMed  CAS  Google Scholar 

  13. Fang X, Tang W, Sun S, Huang L, Chang YT, Castillo C, Weil MH (2006) Comparison of buccal microcirculation between septic and hemorrhagic shock. Crit Care Med 34:S447–S453

    Article  PubMed  Google Scholar 

  14. Balogh Z, Wolfárd A, Szalay L, Orosz E, Simonka JA, Boros M (2002) Dalteparin sodium treatment during resuscitation inhibits hemorrhagic shock-induced leukocyte rolling and adhesion in the mesenteric microcirculation. J Trauma 52:1062–1069

    Article  PubMed  CAS  Google Scholar 

  15. Kerger H, Waschke KF, Ackern KV, Tsai AG, Intaglietta M (1999) Systemic and microcirculatory effects of autologous whole blood resuscitation in severe hemorrhagic shock. Am J Physiol 276:H2035–H2043

    PubMed  CAS  Google Scholar 

  16. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C (2007) Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Optics Express 15:15101–15114

    Article  CAS  PubMed  Google Scholar 

  17. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  PubMed  Google Scholar 

  18. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831

    Article  PubMed  Google Scholar 

  19. Boerma EC, Mathura KR, van der Voort PHJ, Spronk PE, Ince C (2005) Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Crit Care 9:R601–R606

    Article  PubMed  Google Scholar 

  20. Dubin A, Pozo MO, Ferrara G, Murias G, Martins E, Canullán C, Canales HS, Ince C (2006) Changes in microcirculation are early indicators of hypovolemia. Intensive Care Med 32:S81

    Google Scholar 

  21. Dobbe JG, Streekstra GJ, Atasever B, van Zijderveld R, Ince C (2008) Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med Biol Eng Comput 46:659–670

    Article  PubMed  CAS  Google Scholar 

  22. Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, Arnold RC, Colilla S, Zanotti S, Hollenberg SM, Microcirculatory Alterations in Resuscitation, Shock Investigators (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49:88–98

    Article  PubMed  Google Scholar 

  23. De Backer D, Hollenberg S, Boerma C, Goedhart P, Büchele G, Ospina-Tascon G, Dobbe I, Ince C (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11:R101

    Article  PubMed  Google Scholar 

  24. Torrington KG, McNeil JS, Phillips YY, Ripple GR (1989) Blood volume determinations in sheep before and after splenectomy. Lab Anim Sci 39:598–602

    PubMed  CAS  Google Scholar 

  25. American College of Surgeons, Committee on Trauma: advanced trauma life support for doctors course manual (1997), 6th edn. Chicago

  26. Schadt JC, Ludbrook J (1991) Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. Am J Physiol 260:H305–H318

    PubMed  CAS  Google Scholar 

  27. Boerma EC, van der Voort PH, Spronk PE, Ince C (2007) Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis. Crit Care Med 35:1055–1060

    Article  PubMed  Google Scholar 

  28. Dubin A, Edul VS, Pozo MO, Murias G, Canullán CM, Martins EF, Ferrara G, Canales HS, Laporte M, Estenssoro E, Ince C (2008) Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Crit Care Med 36:535–542

    Article  PubMed  CAS  Google Scholar 

  29. Deruddre S, Pottecher J, Georger J, Repéssé X, Benhamou D, Vicaut E, Teboul J, Duranteau J (2007) Sublingual microcirculatory improvement with fluid loading in preload-dependent ICU patients. Intensive Care Med 33:S253

    Article  Google Scholar 

  30. Vajda K, Szabó A, Boros M (2004) Heterogeneous microcirculation in the rat small intestine during hemorrhagic shock: quantification of the effects of hypertonic–hyperoncotic resuscitation. Eur Surg Res 36:338–344

    Article  PubMed  CAS  Google Scholar 

  31. Nakajima Y, Baudry N, Duranteau J, Vicaut E (2001) Microcirculation in intestinal villi: a comparison between hemorrhagic and endotoxin shock. Am J Respir Crit Care Med 164:1526–1530

    PubMed  CAS  Google Scholar 

  32. Zakaria el R, Garrison RN, Spain DA, Matheson PJ, Harris PD, Richardson JD (2003) Intraperitoneal resuscitation improves intestinal blood flow following hemorrhagic shock. Ann Surg 237:704–711

    Article  PubMed  Google Scholar 

  33. Bracht H, Krejci V, Hiltebrand LB, Brandt S, Sigurdsson G, Ali SZ, Takala J, Jakob SM (2008) Orthogonal polarization spectroscopy to detect mesenteric hypoperfusion. Intensive Care Med 34:1883–1890

    Article  PubMed  Google Scholar 

  34. Ince C (2008) The elusive microcirculation. Intensive Care Med 34:1755–1756

    Article  PubMed  Google Scholar 

  35. Boerma EC, Kuiper MA, Kingma WP, Egbers PH, Gerritsen RT, Ince C (2008) Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study. Intensive Care Med 34:1294–1298

    Article  PubMed  Google Scholar 

  36. Dubin A, Estenssoro E, Murias G, Canales H, Sottile P, Badie J, Baran M, Palizas F, Laporte M, Rivas Diaz M (2001) Effects of hemorrhage on gastrointestinal oxygenation. Intensive Care Med 27:1931–1936

    Article  PubMed  CAS  Google Scholar 

  37. Knichwitz G, Rotker J, Mollhoff T, Richter KD, Brussel T (1998) Continuous intramucosal PCO2 measurement allows the early detection of intestinal malperfusion. Crit Care Med 26:1550–1557

    Article  PubMed  CAS  Google Scholar 

  38. McCarter FD, James JH, Luchette FA, Wang L, Friend LA, King JK, Evans JM, George MA, Fischer JE (2001) Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage. J Surg Res 99:235–244

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

Dr. Ince is Chief Scientific Officer of MicroVision Medical (an university-based company manufacturing sidestream dark-field devices) and holds patents and stock related to sidestream dark-field imaging. The remaining authors have not disclosed any potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaldo Dubin.

Additional information

This article is discussed in the editorial available at: doi:10.1007/s00134-008-1386-z

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1.56 MB)

Supplementary material 2 (WMV 4.65 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubin, A., Pozo, M.O., Ferrara, G. et al. Systemic and microcirculatory responses to progressive hemorrhage. Intensive Care Med 35, 556–564 (2009). https://doi.org/10.1007/s00134-008-1385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-008-1385-0

Keywords

Navigation