Skip to main content

Advertisement

Log in

Mini-series: II. Clinical aspects. Clinically relevant CYP450-mediated drug interactions in the ICU

  • Mini Series: Basic research-related topics in ICM
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Background

In the critically ill, multiple drug therapies for acute and chronic conditions are often used at the same time and adverse drug events occur frequently. Many pharmacological and disease-related factors, e.g. altered renal and hepatic function, catecholamine-related circulatory changes, altered drug volume of distribution, enteral versus parenteral feeding and morbid obesity, along with concomitant multiple drug regimens may account for the wide inter-individual variability in drug exposure and response in critically ill patients and for the high risk for drug–drug interactions to occur. The practicing intensivist must remain aware of the major mechanisms for drug–drug interactions, among which the drug-metabolizing enzyme inhibitory or induction potential of associated chemical entities are paramount. Metabolism-based drug–drug interactions are largely due to changes in levels of drug-metabolizing enzymes caused by one drug, leading to changes in the systemic exposure clearance of another. Among the numerous drug-metabolizing enzymes identified to date, the activity of cytochrome P450s (CYP450) is a critical determinant of drug clearance and appears to be involved in the mechanism of numerous clinically relevant drug–drug interactions observed in critically ill patients.

Discussion

This manuscript will cover a practical overview of clinically relevant CYP450-mediated drug–drug interactions. Medications frequently used in the intensive care unit such as benzodiazepines, immunosuppressive agents, opioid analgesics, certain anticonvulsants, the azoles and macrolides have the potential to interact with CYP450-mediated metabolism and may lead to toxicity or therapeutic failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kopp BJ, Erstad BL, Allen ME, Theodorou AA, Priestley G (2006) Medication errors and adverse drug events in an intensive care unit: direct observation approach for detection. Crit Care Med 34:415–425

    Article  PubMed  Google Scholar 

  2. Krishnan V, Murray P (2003) Pharmacologic issues in the critically ill. Clin Chest Med 24:671–688

    Article  PubMed  Google Scholar 

  3. Baxter K, Stockley IH (2006) Stockley’s drug interactions, 7th edn. Pharmaceutical Press, London

    Google Scholar 

  4. Leape LL, Cullen DJ, Dempsey Clapp M, Burdick E, Demonaco HJ, Ives Erickson J, Bates DW (1999) Pharmacist participation on physician rounds and adverse drug events in the intensive care unit. JAMA 281:267–270

    Article  Google Scholar 

  5. Rivkin A (2007) Admission to a medical intensive care unit related to adverse drug reactions. Am J Health Syst Pharm 64:1840–1843

    Article  PubMed  Google Scholar 

  6. Ellenhorn MJ, Sternad FA (1996) Problems of drug interactions. J Am Pharmacol Assoc NS 6:62–68

    Google Scholar 

  7. Pirmohamed M, Park BK (2003) Cytochrome P450 enzyme polymorphisms and adverse drug reactions. Toxicol 192:23–32

    Article  CAS  Google Scholar 

  8. Mann HJ (2006) Drug-associated disease: cytochrome P450 interactions. Crit Care Clin 22:329–345

    Article  PubMed  CAS  Google Scholar 

  9. Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352:2211–2221

    Article  PubMed  CAS  Google Scholar 

  10. Lewis DF (2004) 57 varieties: the human cytochromes P450. Pharmacogenom 5:305–318

    Article  CAS  Google Scholar 

  11. Lin JH, Lu AYH (1998) Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 35:361–390

    Article  PubMed  CAS  Google Scholar 

  12. Kulmatycki KM, Jamali F (2005) Drug disease interactions: role of inflammatory mediators in disease and variability in drug response. J Pharm Pharmaceut Sci 8:602–625

    CAS  Google Scholar 

  13. Renton KW (2004) Cytochrome P450 regulation and drug biotransformation during inflammation and infection. Curr Drug Metab 5:235–243

    Article  PubMed  CAS  Google Scholar 

  14. Venkatakrishnan K, von Moltke LL, Greenblatt DJ (2000) Effects of the antifungal agents on oxidative drug metabolism. Clin Pharmacokinet 38:111–180

    Article  PubMed  CAS  Google Scholar 

  15. Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivistö KT (2003) Pharmacokinetic interactions with rifampicin. Clinical relevance. Clin Pharmacokinet 42:819–850

    Article  PubMed  CAS  Google Scholar 

  16. Finch CK, Chrisman CR, Baciewicz AM, Self TH (2002) Rifampin and rifabutin drug interactions. An update. Arch Intern Med 162:985–992

    Article  PubMed  CAS  Google Scholar 

  17. Gerson LB, Triadafilopoulos G (2001) Proton pump inhibitors and their drug interactions: an evidence-based approach. Eur J Gastroenterol Hepatol 13:611–616

    Article  PubMed  CAS  Google Scholar 

  18. Czock D, Keller F, Rasche FM, Häussler U (2005) Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 44:61–98

    Article  PubMed  CAS  Google Scholar 

  19. Tanaka E (1999) Clinically significant pharmacokinetic drug interactions between anti-epileptic drugs. J Clin Pharm Ther 24:87–89

    Article  PubMed  CAS  Google Scholar 

  20. Perucca E (2005) Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol 61:246–255

    Article  Google Scholar 

  21. Pai MP, Momary KM, Rodvold KA (2006) Antibiotic drug interactions. Med Clin N Am 90:1223–1255

    Article  PubMed  CAS  Google Scholar 

  22. Saad AH, DePestel D, Carver P (2006) Factors influencing the magnitude and clinical significance of drug interactions between azole antifungals and select immunosuppressants. Pharmacotherapy 26:1730–1744

    Article  PubMed  CAS  Google Scholar 

  23. Cozza KL, Armstrong SC, Oesterheld JR (2003) Concise guide to drug interaction principles for medical practice, 2nd edn. American Psychiatric Publishing, Washington, DC

    Google Scholar 

  24. Dresser GK, Spence JD, Bailey DG (2000) Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 38:41–57

    Article  PubMed  CAS  Google Scholar 

  25. Doherty MM, Charman WH (2002) The mucosa of the small intestine: how clinically relevant as an organ of drug metabolism. Clin Pharmacokinet 41:235–253

    Article  PubMed  CAS  Google Scholar 

  26. Backman JT, Kivistö KT, Olkkola KT, Neuvonen PJ (1998) The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 54:53–58

    Article  PubMed  CAS  Google Scholar 

  27. Olkkola KT, Ahonen J, Neuvonen PJ (1996) The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 82:511–516

    Article  PubMed  CAS  Google Scholar 

  28. Theuretzbacher U, Ihle F, Derendorf H (2006) Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet 45:649–663

    Article  PubMed  CAS  Google Scholar 

  29. Gorski JC, Jones DR, Haehner-Daniels BD, Hamman MA, O’Mara EM, Hall SD (1998) The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 64:133–143

    Article  PubMed  CAS  Google Scholar 

  30. Yeates RA, Laufen H, Zimmermann T (1996) Interaction between midazolam and clarithromycin: comparison with azithromycin. Int J Clin Pharmacol Ther 34:400–405

    PubMed  CAS  Google Scholar 

  31. Ahonen J, Olkkola KT, Takala A, Neuvonen PJ (1999) Interaction between fluconazole and midazolam in intensive care patients. Acta Anaesthesiol Scand 43:509–514

    Article  PubMed  CAS  Google Scholar 

  32. Backman JT, Olkolla KT, Ojala M, Laaksovirta H, Neuvonen PJ (1996) Concentrations and effects of oral midazolam are greatly reduced in patients treated with carbamazepine or phenytoin. Epilepsia 37:253–257

    Article  PubMed  CAS  Google Scholar 

  33. Backman JT, Olkkola KT, Neuvonen PJ (1996) Rifampin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther 59:7–13

    Article  PubMed  CAS  Google Scholar 

  34. Kress JP, Pohlman AS, O’Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342:1471–1477

    Article  PubMed  CAS  Google Scholar 

  35. Leather HL (2004) Drug interactions in the hematopoetic stem cell transplant (HSCT) recipient: what every transplanter needs to know. Bone Marr Transplant 33:137–152

    Article  CAS  Google Scholar 

  36. Christians U, Jacobsen W, Benet LZ, Lampen A (2002) Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin Pharmacokinet 41:813–851

    Article  PubMed  CAS  Google Scholar 

  37. Ibrahim RB, Abella EM, Chandrasekar PH (2002) Tacrolimus-clarithromycin interaction in a patient receiving bone marrow transplantation. Ann Pharmacother 36:1971–1972

    Article  PubMed  Google Scholar 

  38. Jensen C, Jordan M, Shapiro R, Scantlebury V, Hakala T, Fung J, Starzl T, Venkataramanan R (1994) Interaction between tacrolimus and erythromycin. Lancet 344:825

    Article  PubMed  CAS  Google Scholar 

  39. Paterson DL, Singh N (1997) Interactions between tacrolimus and antimicrobial agents. Clin Infect Dis 25:1430–1440

    Article  PubMed  CAS  Google Scholar 

  40. Vfend (voriconazole) package insert. Pfizer Inc. January 2006

  41. Romero AJ, Pogamp PL, Nilsson LG, Wood N (2002) Effect of voriconazole on the pharmacokinetics of cyclosporine in renal transplant patients. Clin Pharmacol Ther 71:226–234

    Article  PubMed  CAS  Google Scholar 

  42. Canafax DM, Graves NM, Hilligoss DM, Carleton BC, Gardner MJ, Matas AJ (1991) Interaction between cyclosporine and fluconazole in renal allograft recipients. Transplantation 51:1014–1018

    Article  PubMed  CAS  Google Scholar 

  43. Aguado JM, Herrero JA, Gavalda J, Torre-Cisneros J, Blanes M, Rufi G, Moreno A, Gurgui A, Hayek M, Lumbreras C, and the Spanish Transplantation Infection Study Group, GESITRA (1997) Clinical presentation and outcome of tuberculosis in kidney, liver, and heart transplant recipients in Spain. Transplantation 63:1276–1286

    Article  Google Scholar 

  44. Karasu Z, Gurakar A, Carlson J, Pennington S, Kerwin B, Wright H, Nour B, Sebastian A (2001) Acute tacrolimus overdose and treatment with phenytoin in liver transplant recipients. J Okla State Med Assoc 94:121–123

    PubMed  CAS  Google Scholar 

  45. McLaughlin GE, Gonzalez-Rossique M, Gelman B, Kato T (2000) Use of phenobarbital in the management of acute tacrolimus toxicity: a case report. Transplant Proc 32:665–668

    Article  PubMed  CAS  Google Scholar 

  46. Armstrong SC, Cozza KL (2003) Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, Part I. Psychosomatics 44:167–171

    Article  PubMed  Google Scholar 

  47. Armstrong SC, Cozza L (2003) Pharmacokinetic drug interactions of morphine, codeine and their derivatives: theory and clinical reality, Part II. Psychosomatics 44:515–520

    Article  PubMed  CAS  Google Scholar 

  48. Buck ML, Blumer JL (1991) Opioids and other analgesics. Adverse effects in the intensive care unit. Crit Care Clin 7:615–637

    PubMed  CAS  Google Scholar 

  49. Palkama VJ, Neuvonen PJ, Olkolla KT (1998) The CYP3A4 inhibitor itraconazole has no effect on the pharmacokinetics and pharmacodynamics of i.v. fentanyl. Br J Anaesth 81:598–600

    PubMed  CAS  Google Scholar 

  50. Tempelhoff R, Modica P, Spitznagel E (1988) Increased fentanyl requirement in patients receiving long-term anticonvulsant therapy. Anesthesiology 69:A594

    Article  Google Scholar 

  51. Beers R, Camporesi E (2004) Remifentanil update: clinical science and utility. CNS Drugs 18:1085–1104

    Article  PubMed  CAS  Google Scholar 

  52. Linthoudt H, Van Raemdonck D, Lerut T, Demedts M, Verleden G (1996) The association of itraconazole and methylprednisolone may give rise to important steroid-related side effects. J Heart Lung Transplant 15:1165

    PubMed  CAS  Google Scholar 

  53. Bartoszek M, Brenner AM, Szefler SJ (1987) Prednisolone and methylprednisolone kinetics in children receiving anticonvulsant therapy. Clin Pharmacol Ther 42:424–432

    PubMed  CAS  Google Scholar 

  54. Ray WA, Murray KT, Meredith S, Narasimhulu SS, Hall K, Stein CM (2004) Oral erythromycin and the risk of sudden death from cardiac causes. N Engl J Med 351:1089–1096

    Article  PubMed  CAS  Google Scholar 

  55. Liu BA, Juurlink DN (2004) Drug and the QT interval—Caveat Doctor. N Engl J Med 351:1053–1056

    Article  PubMed  CAS  Google Scholar 

  56. Wallace RJ, Brown BA, Griffith DE, Girard W, Tanaka K (1995) Reduced serum levels of clarithromycin in patients treated with multidrug regimens including rifampin or rifabutin for Mycobacterium avium–M. intracellulare infection. J Infect Dis 171:747–750

    PubMed  Google Scholar 

  57. Telt S, Carey D, Lee HS (1992) Drug interactions with fluconazole. Med J Aust 156:365

    Google Scholar 

  58. Blum RA, Wilton JH, Hilligoss DM, Gardner MJ, Henry EB, Harrisson NJ, Schentag JJ (1991) Effect of fluconazole on the disposition of phenytoin. Clin Pharmacol Ther 49:420–425

    PubMed  CAS  Google Scholar 

  59. Flockhart DA, Tanus-Santos JE (2002) Implications of cytochrome P450 interactions when prescribing medication for hypertension. Arch Intern Med 162:405–412

    Article  PubMed  CAS  Google Scholar 

  60. Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents. 1 December 2007. Developed by the DHHS Panel on antiretroviral guidelines for adults and adolescents—a working group of the office of AIDS research advisory council (OARAC). Available from: http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed on: 15 January 2008

  61. Burger DM, Meenhorst PL, Mulder JW, Kraaijeveld CL, Koks CHW, Bult A, Bijnen JH (1994) Therapeutic drug monitoring of phenytoin in patients with the acquired immunodeficiency syndrome. Ther Drug Monit 16:616–620

    Article  PubMed  CAS  Google Scholar 

  62. Blyden GT, Scavone JM, Greenblatt DJ (1988) Metronidazole impairs clearance of phenytoin but not of alprazolam or lorazepam. J Clin Pharmacol 28:240–245

    PubMed  CAS  Google Scholar 

  63. Kay L, Kampmann JP, Svendsen TL, Vergman B, Hansen JEM, Skovsted L, Kristenen M (1985) Influence of rifampicin and isoniazid on the kinetics of phenytoin. Br J Clin Pharmacol 20:323–326

    PubMed  CAS  Google Scholar 

  64. Holbrook AM, Pereira JA, Labiris R, Mc Donald H, Douketis JD, Crowther M, Wells PS (2005) Systematic overview of warfarin and its drug and food interactions. Arch Intern Med 165:1095–1106

    Article  PubMed  CAS  Google Scholar 

  65. Budnitz DS, Shehab N, Kegler SR, Richards CL (2007) Medication use leading to emergency department visits for adverse drug events in older adults. Ann Intern Med 147:755–765

    PubMed  Google Scholar 

  66. Limdi NA, Veenstra DL (2008) Warfarin pharmacogenetics. Pharmacother 28:1084–1087

    Article  CAS  Google Scholar 

  67. Schwarz UI, Ritchie MD, Bradford Y, Li C, Dudek SM, Frye-Anderson A, Kim RB, Roden DM, Stein CM (2008) Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med 358:999–1008

    Article  PubMed  CAS  Google Scholar 

  68. US Food and Drug Administration. Warfarin product labelling. Available from http://www.fda.gov/cder/foi/label/2007/009218s105lblv2.pdf Accessed 1 September 2008

  69. Ozawa S, Soyama A, Saeki M, Fukushima-Uesaka H, Itoda M, Koyano S, Sai K, Ohno Y, Saito Y, Sawada J (2004) Ethnic differences in genetic polymorphisms of CYP2D6, CYP2C19, CYP3As and MDR1/ABCB1. Drug Metab Pharmacokinet 19:83–95

    Article  PubMed  CAS  Google Scholar 

  70. Stamer UM, Stüber F, Muders T, Musshoff F (2008) Respiratory depression with tramadol in a patient with renal impairment and CYP2D6 gene duplication. Anesth Analg 107:926–929

    Article  PubMed  Google Scholar 

  71. Gashe Y, Daaili Y, Fathi M, Chiappe A, Cottini S, Dayer P, Desmeules J (2004) Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 351:2827–2837

    Article  Google Scholar 

  72. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine prescribed mother. Lancet 368:704

    Article  PubMed  Google Scholar 

  73. Skop BP, Brown TM, Mareth TR (1995) The serotonin syndrome associated with paroxetine. Am J Emerg Med 13:606–607

    Article  Google Scholar 

  74. Kroon LA (2007) Drug interactions with smoking. Am J Health Syst Pharm 64:1917–1921

    Article  PubMed  CAS  Google Scholar 

  75. Mouly S, Meune C, Bergmann JF (2007) Application and clinical value of in vitro models in predicting CYP-mediated drug–drug interactions in the ICU. I. Basic Science (accepted)

  76. US Food and Drug Administration. Center for Devices and Radiological Health consumer information. New device clearance. Roche Amplichip cytochrome P450 genotyping test and Affymetrix GeneChip Microarray Instrumentation System—K042259. Available from: http://www.fda.gov/cdrh/mda/docs/k042259.html Accessed 16 September 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Spriet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spriet, I., Meersseman, W., de Hoon, J. et al. Mini-series: II. Clinical aspects. Clinically relevant CYP450-mediated drug interactions in the ICU. Intensive Care Med 35, 603–612 (2009). https://doi.org/10.1007/s00134-008-1383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-008-1383-2

Keywords

Navigation