Skip to main content
Log in

An assessment of the accuracy of renal blood flow estimation by Doppler ultrasound

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript



Knowledge of renal blood flow is considered important in the management of critically ill patients with acute renal failure. Renal Doppler ultrasound has been used to estimate renal blood flow. Its accuracy, however, has not been formally assessed.


Prospective blinded animal study.


University physiology laboratory.


Seven merino cross-ewes.


We chronically implanted transit-time flow probes around the left renal artery and performed Doppler ultrasound measurements of RBF. We simultaneously recorded RBF values obtained with implanted flow probes and Doppler ultrasound during (a) observation, (b) dobutamine and (c) nitroprusside infusion in random order.


In a total of 202 paired measurements, Doppler ultrasound measured peak systolic velocity (PSV) correlated very weakly with implanted flow probe measurements of RBF (r 2 = 0.015), as did end-diastolic velocity (EDV; r 2 = 0.086) and mean velocity (MV_vel; r 2 = 0.04). We also found similar weak correlations with other Doppler-ultrasound-derived indices. All comparisons showed bias and wide limits of agreement.


Doppler-ultrasound-derived estimates of RBF show little correlation with transit-time flow probe measurements, display significant bias and wide limits of agreement and have low accuracy for clinically significant changes in RBF in large animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. Schrier RW, Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351:159–169

    Article  PubMed  CAS  Google Scholar 

  2. Khati NJ, Hill MC, Kimmel PL (2005) The role of ultrasound in renal insufficiency: the essentials. Ultrasound Q 21:227–244

    Article  PubMed  Google Scholar 

  3. Friedewald SM, Molmenti EP, Friedewald JJ, Dejong MR, Hamper UM (2005) Vascular and nonvascular complications of renal transplants: sonographic evaluation and correlation with other imaging modalities, surgery, and pathology. J Clin Ultrasound 33:127–139

    Article  PubMed  Google Scholar 

  4. Mutze S, Turk I, Schonberger B, Filimonow SI, Bollow M, Petersein J, Ewert R, Reinke P, Stöver B, Hamm B (1997) Colour-coded duplex sonography in the diagnostic assessment of vascular complications after kidney transplantation in children. Pediatr Radiol 27:898–902

    Article  PubMed  CAS  Google Scholar 

  5. Lerolle N, Guerot E, Faisy C, Bornstain C, Diehl JL, Fagon JY (2006) Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med 32:1553–1559

    Article  PubMed  Google Scholar 

  6. Bednarik JA, May CN (1995) Evaluation of a transit-time system for the chronic measurement of blood flow in conscious sheep. J Appl Physiol 78:524–530

    PubMed  CAS  Google Scholar 

  7. Dean DA, Jia CX, Cabreriza SE, D'Alessandro DA, Dickstein ML, Sardo MJ, Chalik N, Spotnitz HM (1996) Validation study of a new transit time ultrasonic flow probe for continuous great vessel measurements. ASAIO J 42:M671–M676

    Article  PubMed  CAS  Google Scholar 

  8. Wan L, Bellomo R, May CN (2006) The effect of normal saline resuscitation on vital organ blood flow in septic sheep. Intensive Care Med 32:1238–1242

    Article  PubMed  CAS  Google Scholar 

  9. Langenberg C, Wan L, Egi M, May CN, Bellomo R (2003) Renal blood flow in experimental septic acute renal failure. Kidney Int 69:1996–2002

    Article  CAS  Google Scholar 

  10. Giantomasso D di, May CN, Bellomo R (2003) Vital organ blood flow during hyperdynamic sepsis. Chest 124:1053–1059

    Article  Google Scholar 

  11. Bland JM, Altman DG (1995) Calculating correlation coefficients with repeated observations. Part 1: Correlation within subjects. Br Med J 310:446–447

    CAS  Google Scholar 

  12. Bland JM, Altman DG (1995) Calculating correlation coefficients with repeated observations. Part 1: Correlation within subjects. Br Med J 310:633–634

    CAS  Google Scholar 

  13. Norris CS, Barnes RW (1984) Renal artery flow velocity analysis: a sensitive measure of experimental and clinical renovascular resistance. J Surg Res 36:230–236

    Article  PubMed  CAS  Google Scholar 

  14. Yoon DY, Kim SH, Kim HD, Na DG, Goo JM, Choi HJ, Yeon KM, Han MC (1995) Doppler sonography in experimentally induced acute renal failure in rabbits. Resistive index versus serum creatinine levels. Invest Radiol 30:168–172

    Article  PubMed  CAS  Google Scholar 

  15. Avasthi PS, Greene ER, Voyles WF, Eldridge MW (1984) A comparison of echo-Doppler and electromagnetic renal blood flow measurements. J Ultrasound Med 3:213–218

    PubMed  CAS  Google Scholar 

  16. Welch WJ, Deng X, Snellen H, Wilcox CS (1995) Validation of miniature ultrasonic transit-time flow probes for measurement of renal blood flow in rats. Am J Physiol 268(1 Pt 2):F175–F178

    PubMed  CAS  Google Scholar 

  17. Gill RW (1979) Pulsed Doppler with B-mode imaging for quantitative blood flow measurement. Ultrasound Med Biol 5:223–225

    Article  PubMed  CAS  Google Scholar 

  18. Burns PN, Jaffe CC (1985) Quantitative flow measurements with Doppler ultrasound: techniques, accuracy and limitations. Radiol Clin North Am 23:150–161

    Google Scholar 

  19. Gibson RN, Gibson PR, Donlan JD, Padmanabhan R (1993) Modified Doppler flowmetry in the splanchnic circulation. Gastroenterology 105:1029–1034

    PubMed  CAS  Google Scholar 

  20. Bax L, Bakker CJ, Klein WM, Blanken N, Beutler JJ, Mali WP (2005) Renal blood flow measurements with use of phase contrast magnetic resonance imaging: normal values and reproducibility. J Vasc Interv Radiol 16:807–814

    PubMed  Google Scholar 

  21. May C, Wan L, Williams J, Wellard MR, Pell G, Langenberg C, Jackson G, Bellomo R (2005) A technique for the measurements of renal ATP in a large animal model of sepsis. In J Artif Organs 28:16–21

    CAS  Google Scholar 

  22. May C, Wan L, Williams J, Wellard MR, Pell G, Jackson G, Bellomo R (2007) A technique for the simultaneous measurement of renal ATP, blood flow and pH in a large animal model of septic shock. Crit Care Resusc 9:30–33

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rinaldo Bellomo.

Additional information

This article is discussed in the editorial available at:

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, L., Yang, N., Hiew, CY. et al. An assessment of the accuracy of renal blood flow estimation by Doppler ultrasound. Intensive Care Med 34, 1503–1510 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: