Cardiorenal syndrome: refining the definition of a complex symbiosis gone wrong

  • Claudio Ronco
  • Andrew A. House
  • Mikko HaapioEmail author
Physiological and Technical Notes



The term “cardiorenal syndrome” has generally been reserved for declining renal function in the setting of advanced congestive heart failure. Considering the complex and bi-directional relationship between the heart and the kidneys, we postulate refining the definition to recognize the symbiotic nature of these organs.


We divide the cardiorenal syndrome into five subtypes: type I, acute cardiorenal syndrome; type II, chronic cardiorenal syndrome; type III, acute renocardiac syndrome; type IV, chronic renocardiac syndrome; and type V, secondary cardiorenal syndrome.


As early recognition of dysfunction in one organ may prove important in mitigating the spiral of co-dysfunction in both, the need for early and treatment-guiding biomarkers, along with their characteristics, are also discussed.


Cardiorenal syndrome Renocardiac syndrome Heart failure Congestive Kidney failure Biological markers 


  1. 1.
    Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC, ADHERE Scientific Advisory Committee and Investigators (2006) Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. J Am Coll Cardiol 47:76–84PubMedCrossRefGoogle Scholar
  2. 2.
    Stevenson LW, Nohria A, Mielniczuk L (2005) Torrent or torment from the tubules? Challenge of the cardiorenal connections. J Am Coll Cardiol 45:2004–2007PubMedCrossRefGoogle Scholar
  3. 3.
    Kimmenade RR van, Januzzi JL Jr, Baggish AL, Lainchbury JG, Bayes-Genis A, Richards AM, Pinto YM (2006) Amino-terminal pro-brain natriuretic peptide, renal function, and outcomes in acute heart failure: redefining the cardiorenal interaction? J Am Coll Cardiol 48:1621–1627CrossRefGoogle Scholar
  4. 4.
    Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B (2005) The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J 26:11–17PubMedCrossRefGoogle Scholar
  5. 5.
    Tsagalis G, Zerefos S, Zerefos N (2007) Cardiorenal syndrome at different stages of chronic kidney disease. Int J Artif Organs 30:564–576PubMedGoogle Scholar
  6. 6.
    Ishani A, Grandits GA, Grimm RH, Svendsen KH, Collins AJ, Prineas RJ, Neaton JD (2006) Association of single measurements of dipstick proteinuria, estimated glomerular filtration rate, and hematocrit with 25-year incidence of end-stage renal disease in the multiple risk factor intervention trial. J Am Soc Nephrol 17:1444–1452PubMedCrossRefGoogle Scholar
  7. 7.
    Silverberg DS, Wexler D, Iaina A, Steinbruch S, Wollman Y, Schwartz D (2006) Anemia, chronic renal disease and congestive heart failure-the cardio renal anemia syndrome: the need for cooperation between cardiologists and nephrologists. Int Urol Nephrol 38:295–310PubMedCrossRefGoogle Scholar
  8. 8.
    Domanovits H, Schillinger M, Mullner M, Thoennissen J, Sterz F, Zeiner A, Druml W (2001) Acute renal failure after successful cardiopulmonary resuscitation. Intensive Care Med 27:1194–1199PubMedCrossRefGoogle Scholar
  9. 9.
    Neuhofer W, Pittrow D (2006) Role of endothelin and endothelin receptor antagonists in renal disease. Eur J Clin Invest 36 Suppl 3:78–88PubMedCrossRefGoogle Scholar
  10. 10.
    Kuitunen A, Vento A, Suojaranta-Ylinen R, Pettila V (2006) Acute renal failure after cardiac surgery: evaluation of the RIFLE classification. Ann Thorac Surg 81:542–546PubMedCrossRefGoogle Scholar
  11. 11.
    Bellomo R, Kellum JA, Ronco C (2007) Defining and classifying acute renal failure: from advocacy to consensus and validation of the RIFLE criteria. Intensive Care Med 33:409–413PubMedCrossRefGoogle Scholar
  12. 12.
    Gottlieb SS, Brater DC, Thomas I, Havranek E, Bourge R, Goldman S, Dyer F, Gomez M, Bennett D, Ticho B, Beckman E, Abraham WT (2002) BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation 105:1348–1353PubMedCrossRefGoogle Scholar
  13. 13.
    Komajda M, Anker SD, Charlesworth A, Okonko D, Metra M, Di Lenarda A, Remme W, Moullet C, Swedberg K, Cleland JG, Poole-Wilson PA (2006) The impact of new onset anaemia on morbidity and mortality in chronic heart failure: results from COMET. Eur Heart J 27:1440–1446PubMedCrossRefGoogle Scholar
  14. 14.
    Struthers AD, MacDonald TM (2004) Review of aldosterone- and angiotensin II-induced target organ damage and prevention. Cardiovasc Res 61:663–670PubMedCrossRefGoogle Scholar
  15. 15.
    Onozato ML, Tojo A, Kobayashi N, Goto A, Matsuoka H, Fujita T (2007) Dual blockade of aldosterone and angiotensin II additively suppresses TGF-beta and NADPH oxidase in the hypertensive kidney. Nephrol Dial Transplant 22:1314–1322PubMedCrossRefGoogle Scholar
  16. 16.
    Spanaus KS, Kronenberg F, Ritz E, Schlapbach R, Fliser D, Hersberger M, Kollerits B, Konig P, von Eckardstein A, Mild-to-Moderate Kidney Disease Study Group (2007) B-type natriuretic peptide concentrations predict the progression of nondiabetic chronic kidney disease: the Mild-to-Moderate Kidney Disease Study. Clin Chem 53:1264–1272PubMedCrossRefGoogle Scholar
  17. 17.
    Kelly KJ (2006) Acute renal failure: much more than a kidney disease. Semin Nephrol 26:105–113PubMedCrossRefGoogle Scholar
  18. 18.
    Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL (2001) Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 103:2055–2059PubMedGoogle Scholar
  19. 19.
    Berl T, Henrich W (2006) Kidney-heart interactions: epidemiology, pathogenesis, and treatment. Clin J Am Soc Nephrol 1:8–18PubMedCrossRefGoogle Scholar
  20. 20.
    Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, McAlister F, Garg AX (2006) Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 17:2034–2047PubMedCrossRefGoogle Scholar
  21. 21.
    Fort J (2005) Chronic renal failure: a cardiovascular risk factor. Kidney Int Suppl 99:S25–S29Google Scholar
  22. 22.
    Schiffrin EL, Lipman ML, Mann JF (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116:85–97PubMedCrossRefGoogle Scholar
  23. 23.
    Meyer TW, Hostetter TH (2007) Uremia. N Engl J Med 357:1316–1325PubMedCrossRefGoogle Scholar
  24. 24.
    Movilli E, Feliciani A, Camerini C, Brunori G, Zubani R, Scolari F, Parrinello G, Cancarini GC (2005) A high calcium-phosphate product is associated with high C-reactive protein concentrations in hemodialysis patients. Nephron Clin Pract 101:c161–c167PubMedCrossRefGoogle Scholar
  25. 25.
    Periyasamy SM, Chen J, Cooney D, Carter P, Omran E, Tian J, Priyadarshi S, Bagrov A, Fedorova O, Malhotra D, Xie Z, Shapiro JI (2001) Effects of uremic serum on isolated cardiac myocyte calcium cycling and contractile function. Kidney Int 60:2367–2376PubMedCrossRefGoogle Scholar
  26. 26.
    Groenning BA, Raymond I, Hildebrandt PR, Nilsson JC, Baumann M, Pedersen F (2004) Diagnostic and prognostic evaluation of left ventricular systolic heart failure by plasma N-terminal pro-brain natriuretic peptide concentrations in a large sample of the general population. Heart 90:297–303PubMedCrossRefGoogle Scholar
  27. 27.
    Carr SJ, Bavanandan S, Fentum B, Ng L (2005) Prognostic potential of brain natriuretic peptide (BNP) in predialysis chronic kidney disease patients. Clin Sci (Lond) 109:75–82CrossRefGoogle Scholar
  28. 28.
    Apple FS, Murakami MM, Pearce LA, Herzog CA (2004) Multi-biomarker risk stratification of N-terminal pro-B-type natriuretic peptide, high-sensitivity C-reactive protein, and cardiac troponin T and I in end-stage renal disease for all-cause death. Clin Chem 50:2279–2285PubMedCrossRefGoogle Scholar
  29. 29.
    Wang AY, Lam CW, Yu CM, Wang M, Chan IH, Zhang Y, Lui SF, Sanderson JE (2007) N-terminal pro-brain natriuretic peptide: an independent risk predictor of cardiovascular congestion, mortality, and adverse cardiovascular outcomes in chronic peritoneal dialysis patients. J Am Soc Nephrol 18:321–330PubMedCrossRefGoogle Scholar
  30. 30.
    Liangos O, Perianayagam MC, Vaidya VS, Han WK, Wald R, Tighiouart H, MacKinnon RW, Li L, Balakrishnan VS, Pereira BJ, Bonventre JV, Jaber BL (2007) Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol 18:904–912PubMedCrossRefGoogle Scholar
  31. 31.
    Honore PM, Joannes-Boyau O, Boer W (2007) The early biomarker of acute kidney injury: in search of the Holy Grail. Intensive Care Med 33:1866–1868PubMedCrossRefGoogle Scholar
  32. 32.
    Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14:2534–2543PubMedCrossRefGoogle Scholar
  33. 33.
    Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365:1231–1238PubMedCrossRefGoogle Scholar
  34. 34.
    Herget-Rosenthal S, Marggraf G, Husing J, Goring F, Pietruck F, Janssen O, Philipp T, Kribben A (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66:1115–1122PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of NephrologySt. Bortolo HospitalVicenzaItaly
  2. 2.Division of NephrologyLondon Health Sciences CentreLondonCanada
  3. 3.Division of NephrologyHUCH Meilahti HospitalHelsinkiFinland

Personalised recommendations