Skip to main content

Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS

Abstract

Objective

To test whether assessing pulmonary permeability by transpulmonary thermodilution enables to differentiate increased permeability pulmonary edema (ALI/ARDS) from hydrostatic pulmonary edema.

Design

Retrospective review of cases.

Setting

A 24-bed medical intensive care unit of a university hospital.

Patients

Forty-eight critically ill patients ventilated for acute respiratory failure with bilateral infiltrates on chest radiograph, a PaO2/FiO2 ratio < 300 mmHg and extravascular lung water indexed for body weight ≥ 12 ml/kg.

Intervention

We assessed pulmonary permeability by two indexes obtained from transpulmonary thermodilution: extravascular lung water/pulmonary blood volume (PVPI) and the ratio of extravascular lung water index over global end-diastolic volume index. The cause of pulmonary edema was determined a posteriori by three experts, taking into account medical history, clinical features, echocardiographic left ventricular function, chest radiography findings, B-type natriuretic peptide serum concentration and the time-course of these findings with therapy. Experts were blind for pulmonary permeability indexes and for global end-diastolic volume.

Measurements and results

ALI/ARDS was diagnosed in 36 cases. The PVPI was 4.7 ± 1.8 and 2.1 ± 0.5 in patients with ALI/ARDS and hydrostatic pulmonary edema, respectively (p < 0.05). The extravascular lung water index/global end-diastolic volume index ratio was 3.0 × 10−2 ± 1.2 × 10−2 and 1.4 × 10−2 ± 0.4 × 10−2 in patients with ALI/ARDS and with hydrostatic pulmonary edema, respectively (p < 0.05). A PVPI ≥ 3 and an extravascular lung water index/global end-diastolic index ratio ≥ 1.8 × 10−2 allowed the diagnosis of ALI/ARDS with a sensitivity of 85% and specificity of 100%.

Conclusion

These results suggest that indexes of pulmonary permeability provided by transpulmonary thermodilution may be useful for determining the mechanism of pulmonary edema in the critically ill.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    PubMed  CAS  Google Scholar 

  2. Monnet X, Teboul JL (2006) Invasive measures of left ventricular preload. Curr Opin Crit Care 12:235–240

    PubMed  Article  Google Scholar 

  3. Isakow W, Schuster DP (2006) Extravascular lung water measurements and hemodynamic monitoring in the critically ill: bed-side alternatives to the pulmonary artery catheter. Am J Physiol Lung Cell Mol Physiol 291:L1118–1131

    PubMed  Article  CAS  Google Scholar 

  4. Schuster DP (1997) Identifying patients with ARDS: time for a different approach. Intensive Care Med 23:1197–1203

    PubMed  Article  CAS  Google Scholar 

  5. Sakka SG, Ruhl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, Meier-Hellmann A (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26:180–187

    PubMed  Article  CAS  Google Scholar 

  6. Katzenelson R, Perel A, Berkenstadt H, Preisman S, Kogan S, Sternik L, Segal E (2004) Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 32:1550–1554

    PubMed  Article  Google Scholar 

  7. Groeneveld AB, Verheij J (2006) Extravascular lung water to blood volume ratios as measures of permeability in sepsis-induced ALI/ARDS. Intensive Care Med 32:1315–1321

    PubMed  Article  Google Scholar 

  8. Murray JF, Matthay MA, Luce JM, Flick MR (1988) An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 138:720–723

    PubMed  CAS  Google Scholar 

  9. Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    PubMed  CAS  Google Scholar 

  10. Newman EV, Merrell M, Genecin A, Monge C, Milnor WR, Mc Keever WP (1951) The dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circulation 4:735–746

    PubMed  CAS  Google Scholar 

  11. Neumann P (1999) Extravascular lung water and intrathoracic blood volume: double versus single indicator dilution technique. Intensive Care Med 25:216–219

    PubMed  Article  CAS  Google Scholar 

  12. Fagon JY, Chastre J, Vuagnat A, Trouillet JL, Novara A, Gibert C (1996) Nosocomial pneumonia and mortality among patients in intensive care units. JAMA 275:866–869

    PubMed  Article  CAS  Google Scholar 

  13. Abraham E, Matthay MA, Dinarello CA, Vincent JL, Cohen J, Opal SM, Glauser M, Parsons P, Fisher CJ Jr, Repine JE (2000) Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Crit Care Med 28:232–235

    PubMed  Article  CAS  Google Scholar 

  14. Gnaegi A, Feihl F, Perret C (1997) Intensive care physicians' insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 25:213–220

    PubMed  Article  CAS  Google Scholar 

  15. Iberti TJ, Fischer EP, Leibowitz AB, Panacek EA, Silverstein JH, Albertson TE (1990) A multicenter study of physicians' knowledge of the pulmonary artery catheter. Pulmonary Artery Catheter Study Group. JAMA 264:2928–2932

    PubMed  Article  CAS  Google Scholar 

  16. Iberti TJ, Daily EK, Leibowitz AB, Schecter CB, Fischer EP, Silverstein JH (1994) Assessment of critical care nurses' knowledge of the pulmonary artery catheter. The Pulmonary Artery Catheter Study Group. Crit Care Med 22:1674–1678

    PubMed  CAS  Article  Google Scholar 

  17. Nunes S, Ruokonen E, Takala J (2003) Pulmonary capillary pressures during the acute respiratory distress syndrome. Intensive Care Med 29:2174–2179

    PubMed  Article  Google Scholar 

  18. Teboul JL, Andrivet P, Ansquer M, Besbes M, Rekik N, Lemaire F, Brun-Buisson C (1992) Bedside evaluation of the resistance of large and medium pulmonary veins in various lung diseases. J Appl Physiol 72:998–1003

    PubMed  CAS  Google Scholar 

  19. Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575

    PubMed  Article  CAS  Google Scholar 

  20. Matthay MA (2002) Clinical measurement of pulmonary edema. Chest 122:1877–1879

    PubMed  Article  Google Scholar 

  21. Fernandez-Mondejar E, Castano-Perez J, Rivera-Fernandez R, Colmenero-Ruiz M, Manzano F, Perez-Villares J, de la Chica R (2003) Quantification of lung water by transpulmonary thermodilution in normal and edematous lung. J Crit Care 18:253–258

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Teboul.

Additional information

This article is discussed in the editorial available at: http://dx.doi.org/10.1007/s00134-006-0499-5

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Monnet, X., Anguel, N., Osman, D. et al. Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med 33, 448–453 (2007). https://doi.org/10.1007/s00134-006-0498-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-006-0498-6

Keywords

  • Pulmonary permeability index
  • ARDS
  • Pulmonary edema
  • Transpulmonary thermodilution