Skip to main content

Advertisement

Log in

Increased colorectal permeability in patients with severe sepsis and septic shock

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To develop a method for the assessment of colorectal permeability in septic patients.

Design and setting

Observational study in ICUs at two university hospitals.

Participants

Nine patients with septic shock and abdominal focus of infection, 7 with severe sepsis and pulmonary focus and 8 healthy subjects.

Measurements and results

Colorectal permeability was assessed as the initial appearance rate of 99mTc-DTPA in plasma after instillation into the rectal lumen and as the cumulative systemic recovery at 1 h. To calculate the latter, volume of distribution and renal clearance of 99mTc-DTPA was estimated by an i. v. bolus of 51Cr-EDTA. The initial rate of permeability was increased in patients with septic shock and severe sepsis compared with controls [29.0 (3.7–83.3), 20.6 (3.6–65.5) and 6.0 (2.2–9.6) cpm ml−1 min−1, respectively, p < 0.05)] with a positive linear trend (r 2 = 0.27, p = 0.01) and correlated to L-lactate concentrations in the rectal lumen (r 2 = 0.39, p < 0.05). The cumulative permeability was also increased in patients with septic shock and severe sepsis compared with controls [2.07 (0.05–15.7), 0.32 (0.01–1.2) and 0.03 (0.01–0.06)‰, respectively, p < 0.01] and correlated to the initial permeability rate (r 2 = 0.26, p = 0.01).

Conclusions

In septic patients, the systemic recovery of a luminally applied marker of paracellular permeability was increased and related to the luminal concentrations of L-lactate and possibly to disease severity. This suggests that the assessment of colorectal permeability by systemic recovery of 99mTc-DTPA is valid and that metabolic dysfunction of the mucosa contributes to increased permeability of the large bowel in patients with severe sepsis and septic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. MacFie J, O'Boyle C, Mitchell CJ, Buckley PM, Johnstone D, Sudworth P (1999) Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut 45:223–228

    Article  PubMed  CAS  Google Scholar 

  2. Fink MP (2003) Intestinal epithelial hyperpermeability: update on the pathogenesis of gut mucosal barrier dysfunction in critical illness. Curr Opin Crit Care 9:143–151

    Article  PubMed  Google Scholar 

  3. Doig CJ, Sutherland LR, Sandham JD, Fick GH, Verhoef M, Meddings JB (1998) Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Am J Respir Crit Care Med 158:444–451

    PubMed  CAS  Google Scholar 

  4. Harris CE, Griffiths RD, Freestone N, Billington D, Atherton ST, Macmillan RR (1992) Intestinal permeability in the critically ill. Intensive Care Med 18:38–41

    Article  PubMed  CAS  Google Scholar 

  5. Roumen RM, Hendriks T, Wevers RA, Goris JA (1993) Intestinal permeability after severe trauma and hemorrhagic shock is increased without relation to septic complications. Arch Surg 128:453–457

    PubMed  CAS  Google Scholar 

  6. Oudemans-van Straaten HM, van der Voort PJ, Hoek FJ, Bosman RJ, van der Spoel JI, Zandstra DF (2002) Pitfalls in gastrointestinal permeability measurement in ICU patients with multiple organ failure using differential sugar absorption. Intensive Care Med 28:130–138

    Article  Google Scholar 

  7. Söderholm JD, Olaison G, Peterson KH, Franzen LE, Lindmark T, Wiren M, Tagesson C, Sjodahl R (2002) Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn's disease. Gut 50:307–313

    Article  PubMed  Google Scholar 

  8. Rask-Madsen J, Schwartz M (1970) Absorption of 51Cr-EDTA in ulcerative colitis following rectal instillation. Scand J Gastroenterol 5:361–368

    PubMed  CAS  Google Scholar 

  9. Jenkins RT, Ramage JK, Jones DB, Collins SM, Goodacre RL, Hunt RH (1988) Small bowel and colonic permeability to 51Cr-EDTA in patients with active inflammatory bowel disease. Clin Invest Med 11:151–155

    PubMed  CAS  Google Scholar 

  10. Den Hond E, Hiele M, Evenepoel P, Peeters M, Ghoos Y, Rutgeerts P (1998) In vivo butyrate metabolism and colonic permeability in extensive ulcerative colitis. Gastroenterology 115:584–590

    Article  Google Scholar 

  11. Due V, Bonde J, Espersen K, Jensen TH, Perner A (2002) Lactic acidosis in the rectal lumen of patients with septic shock measured by luminal equilibrium dialysis. Br J Anaesth 89:919–922

    Article  PubMed  CAS  Google Scholar 

  12. Jørgensen VL, Nielsen SL, Espersen K, Perner A (2004) Increased permeability and lactate concentrations in the rectal mucosa in patients with septic shock. Intensive Care Med 30 (Suppl 1):144

    Google Scholar 

  13. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874

    Google Scholar 

  14. Rehling M, Moller ML, Thamdrup B, Lund JO, Trap-Jensen J (1984) Simultaneous measurement of renal clearance and plasma clearance of 99mTc-labelled diethylenetriaminepenta-acetate,51Cr-labelled ethylenediaminetetra-acetate and inulin in man. Clin Sci (Lond) 66:613–619

    CAS  Google Scholar 

  15. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med 30:536–555

    Article  PubMed  Google Scholar 

  16. Groth S, Aasted M (1989) Determination of 51Cr-EDTA clearence between 15 and 40 ml/min/1.73 m2 by a single plasma sample. Scand J Clin Lab Invest 49:711–717

    PubMed  CAS  Google Scholar 

  17. Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J (1988) In vivo profiles of eicosanoids in ulcerative colitis, Crohn's colitis, and Clostridium difficile colitis. Gastroenterology 95:11–17

    PubMed  CAS  Google Scholar 

  18. Hove H, Nordgaard-Andersen I, Mortensen PB (1994) Faecal DL-lactate concentration in 100 gastrointestinal patients. Scand J Gastroenterol 29:255–259

    PubMed  CAS  Google Scholar 

  19. Bjarnason I, MacPherson A, Hollander D (1995) Intestinal permeability: an overview. Gastroenterology 108:1566–1581

    Article  PubMed  CAS  Google Scholar 

  20. Jirillo E, Caccavo D, Magrone T, Piccigallo E, Amati L, Lembo A, Kalis C, Gumenscheimer M (2002) The role of the liver in the response to LPS: experimental and clinical findings. J Endotoxin Res 8: 319–327

    Google Scholar 

  21. Bowdish DM, Hancock RE (2005) Anti-endotoxin properties of cationic host defence peptides and proteins. J Endotoxin Res 11:230–236

    Article  PubMed  CAS  Google Scholar 

  22. Rootwelt K, Falch D, Sjökvist R (1980) Determination of glomerular filtration rate (GFR) by analysis of capillary blood after single shot injection of 99mTc-DTPA. A comparison with simultaneous 125I-iothalamate GFR estimation showing equal GFR but difference in distribution volume. Eur J Nucl Med 5:97–102

    Article  PubMed  CAS  Google Scholar 

  23. Rehling M, Nielsen LE, Marqversen J (2001) Protein binding of 99mTc-DTPA compared with other GFR tracers. Nucl Med Commun 22:617–623

    Article  PubMed  CAS  Google Scholar 

  24. Han X, Fink MP, Yang R, Delude RL (2004) Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 21:261–270

    Article  PubMed  CAS  Google Scholar 

  25. Bojarski C, Gitter AH, Bendfeldt K, Mankertz J, Schmitz H, Wagner S, Fromm M, Schulzke JD (2001) Permeability of human HT-29/B6 colonic epithelium as a function of apoptosis. J Physiol 535:541–552

    Article  PubMed  CAS  Google Scholar 

  26. Zeissig S, Bojarski C, Buergel N, Mankertz J, Zeitz M, Fromm M, Schulzke JD (2004) Downregulation of epithelial apoptosis and barrier repair in active Crohn's disease by tumour necrosis factor alpha antibody treatment. Gut 53:1295–1302

    Article  PubMed  CAS  Google Scholar 

  27. Tenhunen JJ, Kosunen H, Alhava E, Tuomisto L, Takala JA (1999) Intestinal luminal microdialysis: a new approach to assess gut mucosal ischemia. Anesthesiology 91:1807–1815

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Departments of Clinical Physiology and Intensive Care, Herlev Hospital and Intensive Care, Rigshospitalet, Copenhagen, for excellent assistance. The Danish Medical Research Council (grant no. 22-03-0335) supported the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Perner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jørgensen, V.L., Nielsen, S.L., Espersen, K. et al. Increased colorectal permeability in patients with severe sepsis and septic shock. Intensive Care Med 32, 1790–1796 (2006). https://doi.org/10.1007/s00134-006-0356-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-006-0356-6

Keywords

Navigation