Skip to main content
Log in

The effect of N-acetylcysteine on posttraumatic changes after controlled cortical impact in rats

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

The antioxidant potential N-Acetylcysteine (NAC) and its improvement of posttraumatic mitrochondrial dysfunction have been reported. This study investigated the effect of NAC on posttraumatic changes after controlled cortical Impact (CCI) injury.

Design and setting

Prospective randomized controlled animal study.

Methods

A moderate left focal cortical contusion was induced using CCI. Either NAC (163 mg/kg bw) or physiological saline was administered intraperitoneally immediately and 2 and 4 h after trauma. Blood gases, temperature, mean arterial blood pressure (MABP), and intracranial pressure (ICP) were monitored. Twenty-four hours after trauma brains were removed and either posttraumatic edema was quantified gravimetrically (n=24], or contusion volume was determined morphometrically using slices staining and computerized image analysis (n=24]. Laser Doppler flowmetry was used to assess pericontusional cortical perfusion before trauma, 30 min and 4 and 24 h after trauma (n=14].

Measurements and results

Physiological parameters remained within normal limits. ICP measurements and water content in traumatized hemispheres did not differ between the groups. Relative contusion volume of the left hemisphere was slightly but nonsignificantly diminished in NAC-treated animals (4.7±0.4% vs. 5.9±0.5% in controls). In both groups pericontusional perfusion was significantly reduced at 4 h followed by a state of hyperperfusion at 24 h with no differences between the groups.

Conclusions

Despite previously reported neuroprotective abilities of NAC, no positive effect on posttraumatic perfusion, brain edema formation, or contusion volume after focal brain injury was observed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Enblad P, Nilsson P, Chambers, I, Citerio, G, Fiddes, H, Howells, T, Kiening, K, Ragauskas, A, Sahuquillo, J, Yau, YH, Contant, C, Piper, IR (2004) Survey of traumatic brain injury management in European brain IT centres year 2001. Intensive Care Med 30:1058–1065

    Article  PubMed  Google Scholar 

  2. Clausen, F, Lundqvist, H, Ekmark, S, Lewen, A, Ebendal, T, Hillered, L (2004) Oxygen free radical-dependent activation of extracellular signal-regulated kinase mediates apoptosis-like cell death after traumatic brain injury. J Neurotrauma 21:1168–1182

    Article  PubMed  Google Scholar 

  3. Gilgun-Sherki, Y, Rosenbaum, Z, Melamed, E, Offen, D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54:271–284

    Article  PubMed  Google Scholar 

  4. Hall ED (1995) Inhibition of lipid peroxidation in central nervous system trauma and ischemia. J Neurol Sci 134 Suppl:79–83

    Article  Google Scholar 

  5. Smith SL, Andrus PK, Zhang JR, Hall ED (1994) Direct measurement of hydroxyl radicals, lipid peroxidation, and blood-brain barrier disruption following unilateral cortical impact head injury in the rat. J Neurotrauma 11:393–404

    PubMed  Google Scholar 

  6. Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6:593–597

    Article  PubMed  Google Scholar 

  7. Cuzzocrea S, Mazzon E, Costantino G, Serraino I, Dugo L, Calabro G, Cucinotta G, De Sarro A, Caputi AP (2000) Beneficial effects of N-acetylcysteine on ischaemic brain injury. Br J Pharmacol 130:1219–1226

    Article  PubMed  Google Scholar 

  8. Hart AM, Terenghi G, Kellerth JO, Wiberg M (2004) Sensory neuroprotection, mitochondrial preservation, and therapeutic potential of N-acetyl-cysteine after nerve injury. Neuroscience 125:91–101

    Article  PubMed  Google Scholar 

  9. Khan M, Sekhon B, Jatana M, Giri S, Gilg AG, Sekhon C, Singh I, Singh AK (2004) Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res 76:519–527

    Article  PubMed  Google Scholar 

  10. Knuckey NW, Palm D, Primiano M, Epstein MH, Johanson CE (1995) N-Acetylcysteine enhances hippocampal neuronal survival after transient forebrain ischemia in rats. Stroke 26:305–310

    PubMed  Google Scholar 

  11. Sekhon B, Sekhon C, Khan M, Patel SJ, Singh I, Singh AK (2003) N-Acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Res 971:1–8

    Article  PubMed  Google Scholar 

  12. Wagner R, Heckman HM, Myers RR (1998) Wallerian degeneration and hyperalgesia after peripheral nerve injury are glutathione-dependent. Pain 77:173–179

    Article  PubMed  Google Scholar 

  13. Yi JH, Hazell AS (2005) N-Acetylcysteine attenuates early induction of heme oxygenase-1 following traumatic brain injury. Brain Res 1033:13–19

    Article  PubMed  Google Scholar 

  14. Hall ED, Andrus PK, Yonkers PA (1993) Brain hydroxyl radical generation in acute experimental head injury. J Neurochem 60:588–594

    PubMed  Google Scholar 

  15. Al Moutaery K, Al Deeb S, Ahmad Khan H, Tariq M (2003) Caffeine impairs short-term neurological outcome after concussive head injury in rats. Neurosurgery 53:704–711

    PubMed  Google Scholar 

  16. Sullivan PG, Thompson MB, Scheff SW (1999) Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol 160:226–234

    Article  PubMed  Google Scholar 

  17. Sullivan PG, Bruce-Keller AJ, Rabchevsky AG, Christakos S, Clair DK, Mattson MP, Scheff SW (1999) Exacerbation of damage and altered NF-kappaB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J Neurosci 19:6248–6456

    PubMed  Google Scholar 

  18. Aoyama N, Katayama Y, Kawamata T, Maeda T, Mori T, Yamamoto T, Kikuchi T, Uwahodo Y (2002) Effects of antioxidant, OPC-14117, on secondary cellular damage and behavioral deficits following cortical contusion in the rat. Brain Res 934:117–124

    Article  PubMed  Google Scholar 

  19. Cherian L, Robertson CS (2003) L-Arginine and free radical scavengers increase cerebral blood flow and brain tissue nitric oxide concentrations after controlled cortical impact injury in Rats. J Neurotrauma 20:77–85

    Article  PubMed  Google Scholar 

  20. Sarrafzadeh AS, Thomale UW, Kroppenstedt SN, Unterberg AW (2000) Neuroprotective effect of melatonin on cortical impact injury in the rat. Acta Neurochir (Wien) 142:1293–1299

    Google Scholar 

  21. Yunoki M, Kawauchi M, Ukita N, Sugiura T, Ohmoto T (2003) Effects of lecithinized superoxide dismutase on neuronal cell loss in CA3 hippocampus after traumatic brain injury in rats. Surg Neurol 59:156–160

    Article  PubMed  Google Scholar 

  22. Thomale UW, Griebenow M, Kroppenstedt SN, Unterberg A, Stover JF (2004) The antioxidant properties of N-acethylcysteine after experimental contusion in rats. Acta Neurochir Suppl

  23. Stover JF, Beyer TF, Unterberg AW (2000) Riluzole reduces brain swelling and contusion volume in rats following controlled cortical impact injury. J Neurotrauma 17:1171–1178

    PubMed  Google Scholar 

  24. Stover JF, Sakowitz OW, Beyer TF, Dohse NK, Kroppenstedt SN, Thomale UW, Schaser KD, Unterberg AW (2003) Effects of LY379268, a selective group II metabotropic glutamate receptor agonist on EEG activity, cortical perfusion, tissue damage, and cortical glutamate, glucose, and lactate levels in brain-injured rats. J Neurotrauma 20:315–326

    Article  PubMed  Google Scholar 

  25. Thomale UW, Kroppenstedt SN, Beyer TF, Schaser KD, Unterberg AW, Stover JF (2002) Temporal profile of cortical perfusion and microcirculation after controlled cortical impact injury in rats. J Neurotrauma 19:403–413

    Article  PubMed  Google Scholar 

  26. Xiong Y, Peterson PL, Lee CP (1999) Effect of N-acetylcysteine on mitochondrial function following traumatic brain injury in rats. J Neurotrauma 16:1067–1082

    PubMed  Google Scholar 

  27. Stover JF, Dohse NK, Unterberg AW (2000) Bradykinin 2 receptor antagonist LF 16-0687Ms reduces posttraumatic brain edema. Acta Neurochir Suppl 76:171–175

    PubMed  Google Scholar 

  28. Moinard C, Neveux N, Royo N, Genthon C, Marchand-Verrecchia C, Plotkine M, Cynober L (2005) Characterization of the alteration of nutritional state in brain injury induced by fluid percussion in rats. Intensive Care Med 31:281–288

    Article  PubMed  Google Scholar 

  29. Harrison PM, Wendon JA, Gimson AE, Alexander GJ, Williams R (1991) Improvement by acetylcysteine of hemodynamics and oxygen transport in fulminant hepatic failure. N Engl J Med 324:1852–1857

    PubMed  Google Scholar 

  30. Wendon JA, Harrison PM, Keays R, Williams R (1994) Cerebral blood flow and metabolism in fulminant liver failure. Hepatology 19:1407–1413

    Article  PubMed  Google Scholar 

  31. Muir JK, Tynan M, Caldwell R, Ellis EF (1995) Superoxide dismutase improves posttraumatic cortical blood flow in rats. J Neurotrauma 12:179–188

    PubMed  Google Scholar 

  32. Schaser KD, Bail HJ, Schewior L, Stover JF, Melcher I, Haas NP, Mittlmeier T (2005) Acute effects of N-acetylcysteine on skeletal muscle microcirculation following closed soft tissue trauma in rats. J Orthop Res 23:231–241

    Article  PubMed  Google Scholar 

  33. Stroop R, Thomale UW, Pauser S, Bernarding J, Vollmann W, Wolf KJ, Lanksch WR, Unterberg AW (1998) Magnetic resonance imaging studies with cluster algorithm for characterization of brain edema after controlled cortical impact injury (CCII). Acta Neurochir Suppl 71:303–305

    PubMed  Google Scholar 

  34. Unterberg AW, Stroop R, Thomale UW, Kiening KL, Pauser S, Vollmann W (1997) Characterisation of brain edema following “controlled cortical impact injury” in rats. Acta Neurochir Suppl 70:106–108

    PubMed  Google Scholar 

  35. Farr SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, Eyerman E, Butterfield DA, Morley JE (2003) The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 84:1173–1183

    Article  PubMed  Google Scholar 

  36. Baskaya MK, Rao AM, Dogan A, Donaldson D, Dempsey RJ (1997) The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226:33–36

    Article  PubMed  Google Scholar 

  37. Silbergleit R, Haywood Y, Fiskum G, Rosenthal RE (1999) Lack of a neuroprotective effect from N-acetylcysteine after cardiac arrest and resuscitation in a canine model. Resuscitation 40:181–186

    Article  PubMed  Google Scholar 

  38. Ellis EF, Dodson LY, Police RJ (1991) Restoration of cerebrovascular responsiveness to hyperventilation by the oxygen radical scavenger N-acetylcysteine following experimental traumatic brain injury. J Neurosurg 75:774–749

    PubMed  Google Scholar 

  39. Nomoto Y, Yamamoto M, Fukushima T, Kimura H, Ohshima K, Tomonaga M (2001) Expression of nuclear factor kappaB and tumor necrosis factor alpha in the mouse brain after experimental thermal ablation injury. Neurosurgery 48:158–166

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich-Wilhelm Thomale.

Additional information

U.-W. Thomale and M. Griebenow contributed equally to this study

This work was supported in part by research grants from Charité Hospital, Humboldt University, Berlin (89531154 to U.W.T.) and Research Award 2001 of the Deutsche Gesellschaft für Neurotraumatologie und Klinische Neuropsychologie (to J.F.S.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomale, UW., Griebenow, M., Kroppenstedt, SN. et al. The effect of N-acetylcysteine on posttraumatic changes after controlled cortical impact in rats. Intensive Care Med 32, 149–155 (2006). https://doi.org/10.1007/s00134-005-2845-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-005-2845-4

Keywords

Navigation