Intensive Care Medicine

, Volume 31, Issue 6, pp 776–784 | Cite as

The concept of “baby lung”

Seminal Study

Abstract

Background

The “baby lung” concept originated as an offspring of computed tomography examinations which showed in most patients with acute lung injury/acute respiratory distress syndrome that the normally aerated tissue has the dimensions of the lung of a 5- to 6-year-old child (300–500 g aerated tissue).

Discussion

The respiratory system compliance is linearly related to the “baby lung” dimensions, suggesting that the acute respiratory distress syndrome lung is not “stiff” but instead small, with nearly normal intrinsic elasticity. Initially we taught that the “baby lung” is a distinct anatomical structure, in the nondependent lung regions. However, the density redistribution in prone position shows that the “baby lung” is a functional and not an anatomical concept. This provides a rational for “gentle lung treatment” and a background to explain concepts such as baro- and volutrauma.

Conclusions

From a physiological perspective the “baby lung” helps to understand ventilator-induced lung injury. In this context, what appears dangerous is not the VT/kg ratio but instead the VT/”baby lung” ratio. The practical message is straightforward: the smaller the “baby lung,” the greater is the potential for unsafe mechanical ventilation.

Keywords

Acute respiratory distress syndrome Baby lung Baro-/volutrauma Mechanical ventilation Respiratory system compliance Ventilator-induced lung injury 

References

  1. 1.
    Ashbaugh DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet II:319–323CrossRefGoogle Scholar
  2. 2.
    Gattinoni L, Pesenti A (1987) ARDS: the non-homogeneous lung; facts and hypothesis. Intensive Crit Care Dig 6:1–4Google Scholar
  3. 3.
    Pontoppidan H, Geffin B, Lowenstein E (1972) Acute respiratory failure in the adult. III. N Engl J Med 287:799–806PubMedCrossRefGoogle Scholar
  4. 4.
    Kumar A, Pontoppidan H, Falke KJ et al (1973) Pulmonary barotrauma during mechanical ventilation. Crit Care Med 1:181–186PubMedCrossRefGoogle Scholar
  5. 5.
    Baeza OR, Wagner RB, Lowery BD (1975) Pulmonary hyperinflation. A form of barotrauma during mechanical ventilation. J Thorac Cardiovasc Surg 70:790–805PubMedGoogle Scholar
  6. 6.
    Falke KJ, Pontoppidan H, Kumar A et al (1972) Ventilation with end-expiratory pressure in acute lung disease. J Clin Invest 51:2315–2323PubMedCrossRefGoogle Scholar
  7. 7.
    Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289PubMedCrossRefGoogle Scholar
  8. 8.
    Lemaire F, Harf A, Simonneau G et al (1981) [Gas exchange, static pressure-volume curve and positive-pressure ventilation at the end of expiration. Study of 16 cases of acute respiratory insufficiency in adults]. Ann Anesthesiol Fr 22:435–441PubMedGoogle Scholar
  9. 9.
    Kirby RR, Downs JB, Civetta JM et al (1975) High level positive end expiratory pressure (PEEP) in acute respiratory insufficiency. Chest 67:156–163PubMedCrossRefGoogle Scholar
  10. 10.
    Hill JD, O’Brien TG, Murray JJ et al (1972) Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med 286:629–634PubMedCrossRefGoogle Scholar
  11. 11.
    Zapol WM, Snider MT, Hill JD et al (1979) Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 242:2193–2196CrossRefPubMedGoogle Scholar
  12. 12.
    Kolobow T, Gattinoni L, Tomlinson TA, Pierce JE (1977) Control of breathing using an extracorporeal membrane lung. Anesthesiology 46:138–141PubMedCrossRefGoogle Scholar
  13. 13.
    Kolobow T, Gattinoni L, Tomlinson T, Pierce JE (1978) An alternative to breathing. J Thorac Cardiovasc Surg 75:261–266PubMedGoogle Scholar
  14. 14.
    Gattinoni L, Kolobow T, Tomlinson T et al (1978) Control of intermittent positive pressure breathing (IPPB) by extracorporeal removal of carbon dioxide. Br J Anaesth 50:753–758PubMedCrossRefGoogle Scholar
  15. 15.
    Gattinoni L, Agostoni A, Pesenti A et al (1980) Treatment of acute respiratory failure with low-frequency positive-pressure ventilation and extracorporeal removal of CO2. Lancet II:292–294CrossRefGoogle Scholar
  16. 16.
    Gattinoni L, Pesenti A, Mascheroni D et al (1986) Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA 256:881–886PubMedCrossRefGoogle Scholar
  17. 17.
    Rommelsheim K, Lackner K, Westhofen P et al (1983) [Respiratory distress syndrome of the adult in the computer tomograph]. Anasth Intensivther Notfallmed 18:59–64PubMedCrossRefGoogle Scholar
  18. 18.
    Maunder RJ, Shuman WP, McHugh JW et al (1986) Preservation of normal lung regions in the adult respiratory distress syndrome. Analysis by computed tomography. JAMA 255:2463–2465PubMedCrossRefGoogle Scholar
  19. 19.
    Gattinoni L, Mascheroni D, Torresin A et al (1986) Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med 12:137–142PubMedCrossRefGoogle Scholar
  20. 20.
    Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164:1701–1711PubMedGoogle Scholar
  21. 21.
    Gattinoni L, Pesenti A, Avalli L et al (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736PubMedGoogle Scholar
  22. 22.
    Gattinoni L, Pesenti A, Baglioni S et al (1988) Inflammatory pulmonary edema and positive end-expiratory pressure: correlations between imaging and physiologic studies. J Thorac Imaging 3:59–64PubMedCrossRefGoogle Scholar
  23. 23.
    Gattinoni L, D’Andrea L, Pelosi P et al (1993) Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 269:2122–2127CrossRefPubMedGoogle Scholar
  24. 24.
    Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164PubMedGoogle Scholar
  25. 25.
    Langer M, Mascheroni D, Marcolin R, Gattinoni L (1988) The prone position in ARDS patients. A clinical study. Chest 94:103–107PubMedCrossRefGoogle Scholar
  26. 26.
    Gattinoni L, Pelosi P, Vitale G et al (1991) Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology 74:15–23PubMedCrossRefGoogle Scholar
  27. 27.
    Pelosi P, D’Andrea L, Vitale G et al (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149:8–13PubMedGoogle Scholar
  28. 28.
    Jones T, Jones HA, Rhodes CG et al (1976) Distribution of extravascular fluid volumes in isolated perfused lungs measured with H215O. J Clin Invest 57:706–713CrossRefPubMedGoogle Scholar
  29. 29.
    Hales CA, Kanarek DJ, Ahluwalia B et al (1981) Regional edema formation in isolated perfused dog lungs. Circ Res 48:121–127PubMedADSGoogle Scholar
  30. 30.
    Sandiford P, Province MA, Schuster DP (1995) Distribution of regional density and vascular permeability in the adult respiratory distress syndrome. Am J Respir Crit Care Med 151:737–742PubMedGoogle Scholar
  31. 31.
    Quintel M, Pelosi P, Caironi P et al (2004) An increase of abdominal pressure increases pulmonary edema in oleic acid-induced lung injury. Am J Respir Crit Care Med 169:534–541CrossRefPubMedGoogle Scholar
  32. 32.
    Albert RK, Hubmayr RD (2000) The prone position eliminates compression of the lungs by the heart. Am J Respir Crit Care Med 161:1660–1665PubMedGoogle Scholar
  33. 33.
    Malbouisson LM, Busch CJ, Puybasset L et al (2000) Role of the heart in the loss of aeration characterizing lower lobes in acute respiratory distress syndrome. CT Scan ARDS Study Group. Am J Respir Crit Care Med 161:2005–2012PubMedGoogle Scholar
  34. 34.
    Bone RC (1993) The ARDS lung. New insights from computed tomography. JAMA 269:2134–2135PubMedCrossRefGoogle Scholar
  35. 35.
    Gattinoni L, Pelosi P, Valenza F, Mascheroni D (1994) Patient positioning in acute respiratory failure. In: Tobin MJ (ed) Principle and practice of mechanical ventilation. McGraw-Hill, New York, pp 1067–1076Google Scholar
  36. 36.
    Pelosi P, Goldner M, McKibben A et al (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130PubMedGoogle Scholar
  37. 37.
    Martynowicz MA, Minor TA, Walters BJ, Hubmayr RD (1999) Regional expansion of oleic acid-injured lungs. Am J Respir Crit Care Med 160:250–258PubMedGoogle Scholar
  38. 38.
    Wilson TA, Anafi RC, Hubmayr RD (2001) Mechanics of edematous lungs. J Appl Physiol 90:2088–2093PubMedGoogle Scholar
  39. 39.
    Gattinoni L, Pelosi P, Suter PM et al (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158:3–11PubMedGoogle Scholar
  40. 40.
    Ranieri VM, Brienza N, Santostasi S et al (1997) Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: role of abdominal distension. Am J Respir Crit Care Med 156:1082–1091PubMedGoogle Scholar
  41. 41.
    Goodman LR, Fumagalli R, Tagliabue P et al (1999) Adult respiratory distress syndrome due to pulmonary and extrapulmonary causes: CT, clinical, and functional correlations. Radiology 213:545–552PubMedGoogle Scholar
  42. 42.
    Desai SR, Wells AU, Suntharalingam G et al (2001) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary injury: a comparative CT study. Radiology 218:689–693PubMedGoogle Scholar
  43. 43.
    Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814PubMedGoogle Scholar
  44. 44.
    Crotti S, Mascheroni D, Caironi P et al (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164:131–140PubMedGoogle Scholar
  45. 45.
    Jonson B, Richard JC, Straus C et al (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178PubMedGoogle Scholar
  46. 46.
    Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16:372–377PubMedCrossRefGoogle Scholar
  47. 47.
    Darioli R, Perret C (1984) Mechanical controlled hypoventilation in status asthmaticus. Am Rev Respir Dis 129:385–387PubMedGoogle Scholar
  48. 48.
    Pesenti A (1990) Target blood gases during ARDS ventilatory management. Intensive Care Med 16:349–351PubMedCrossRefGoogle Scholar
  49. 49.
    Gattinoni L, Carlesso E, Cadringher P et al (2003) Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl 47:15s-25sPubMedCrossRefGoogle Scholar
  50. 50.
    Weibel ER (1986) Functional morphology of lung parenchyma. In: American Physiological Society (ed) Handbook of physiology a critical, comprehensive presentation of physiological knowledge and concepts. Waverly, Baltimore, pp 89–111Google Scholar
  51. 51.
    Wilson TA (1986) Solid mechanics. In: American Physiological Society (ed) Handbook of physiology a critical, comprehensive presentation of physiological knowledge and concepts. Waverly, Baltimore, pp 35–39Google Scholar
  52. 52.
    Dos Santos CC, Slutsky AS (2000) Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89:1645–1655ADSGoogle Scholar
  53. 53.
    Pugin J, Dunn I, Jolliet P et al (1998) Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 275:L1040–L1050PubMedGoogle Scholar
  54. 54.
    Edwards YS (2001) Stretch stimulation: its effects on alveolar type II cell function in the lung. Comp Biochem Physiol A Mol Integr Physiol 129:245–260PubMedCrossRefGoogle Scholar
  55. 55.
    Vlahakis NE, Hubmayr RD (2000) Invited review: plasma membrane stress failure in alveolar epithelial cells. J Appl Physiol 89:2490–2496PubMedGoogle Scholar
  56. 56.
    Vlahakis NE, Hubmayr RD (2003) Response of alveolar cells to mechanical stress. Curr Opin Crit Care 9:2–8PubMedCrossRefGoogle Scholar
  57. 57.
    Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD (2001) Deformation-induced lipid trafficking in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 280:L938–L946PubMedGoogle Scholar
  58. 58.
    Liu M, Tanswell AK, Post M (1999) Mechanical force-induced signal transduction in lung cells. Am J Physiol 277:L667–L683PubMedGoogle Scholar
  59. 59.
    Uhlig S (2002) Ventilation-induced lung injury and mechanotransduction: stretching it too far? Am J Physiol Lung Cell Mol Physiol 282:L892–L896PubMedGoogle Scholar
  60. 60.
    Pugin J (2003) Molecular mechanisms of lung cell activation induced by cyclic stretch. Crit Care Med 31:S200–S206PubMedCrossRefGoogle Scholar
  61. 61.
    Haseneen NA, Vaday GG, Zucker S, Foda HD (2003) Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN Am J Physiol Lung Cell Mol Physiol 284:L541–L547Google Scholar
  62. 62.
    Yamamoto H, Teramoto H, Uetani K et al (2002) Cyclic stretch upregulates interleukin-8 and transforming growth factor-beta1 production through a protein kinase C-dependent pathway in alveolar epithelial cells. Respirology 7:103–109PubMedCrossRefGoogle Scholar
  63. 63.
    Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD (1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 277:L167–L173PubMedGoogle Scholar
  64. 64.
    Belperio JA, Keane MP, Burdick MD et al (2002) Critical role for CXCR2 and CXCR2 ligands during the pathogenesis of ventilator-induced lung injury. J Clin Invest 110:1703–1716PubMedGoogle Scholar
  65. 65.
    Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefPubMedGoogle Scholar
  66. 66.
    Valenza F, Guglielmi M, Maffioletti M et al (2005) Prone position delays the progression of ventilator-induced lung injury in rats: does lung strain distribution play a role? Crit Care Med 33:361–367PubMedCrossRefGoogle Scholar
  67. 67.
    Weibel ER (1984) The pathway for oxygen structure and function in the mammalian respiratory system. Harvard University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Istituto di Anestesia e Rianimazione, Fondazione IRCCS, Ospedale Maggiore Policlinico, MangiagalliRegina Elena di Milano, Università degli StudiMilanItaly
  2. 2.Dipartimento di Medicina Perioperatoria e Terapia Intensiva, A.O. Ospedale S.Gerardo MonzaUniversità degli StudiMilan-BicoccaItaly

Personalised recommendations