Skip to main content
Log in

Levels of vancomycin in the cerebral interstitial fluid after severe head injury

  • Brief Report
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To evaluate the concentrations of vancomycin in the cerebral interstitial fluid after intravenous administration by multiple boli.

Design

Prospective non randomized study

Setting

University hospital general ICU

Patients

Four patients undergone to craniotomy for evacuation of cerebral posttraumatic hemorrhage, who developed pneumonia 4–7 days from the injury

Methods

Two microdialysis catheters were placed in each patient: one in the edematous brain surrounding the focal lesion and one in the subcutaneous tissue of abdomen. Levels of vancomycin were measured in serum and in the microdialysates samples.

Results

Plasmatic concentration of 10–15 μg/ml in the trough level was obtained after four administrations of vancomycin. Levels of vancomycin in the subcutaneous tissue was above minimum inhibitory concentrations in all patients after the second administration. Mean serum/brain ratio was 8%. Cerebral interstitial concentration of vancomycin was never above minimum inhibitory concentrations; its maximum value was 1.2 μg/ml.

Conclusions

In edematous brain close to a posttraumatic hemorrhage the levels of vancomycin do not differ from that in healthy subjects. At these plasmatic concentrations cerebral interstitial levels of vancomycin were insufficient while subcutaneous interstitial levels were effective for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Povlishock JT (1998) The pathophysiology of blood-brain barrier dysfunction due to traumatic brain injury. In: Pardridge WM (ed) Introduction to the blood-brain barrier; methodology, biology and pathology. Cambridge University Press, Cambridge, pp 441–453

    Google Scholar 

  2. Bouw R, Ederoth P, Lundberg J, Ungerstedt U, Nordstrom CH, Hammarlud-Udenaes M (2001) Increased blood–brain barrier permeability of morphine in a patient with severe brain lesions as determined by microdialysis. Acta Anaesthesiol Scand 45:390–392

    Article  PubMed  CAS  Google Scholar 

  3. Begg EJ, Barclay ML, Kirkpatrick CJM (1999) The therapeutic monitoring of antimicrobial agents. Br J Clin Pharmacol 47:23–30

    Article  PubMed  CAS  Google Scholar 

  4. British National Formulary (2005) British national formulary, vol 49. British Medical Association and Royal Pharmaceutical Society of Great Britain, London

    Google Scholar 

  5. Abbott NJ, Romero A (1996) Transporting therapeutics across the blood-brain barrier. Mol Med Today 2:106–113

    Article  PubMed  CAS  Google Scholar 

  6. Lutsar I, McCracken GH Jr, Friedland IR (1998) Antibiotic pharmacodynamics in cerebrospinal fluid. Clin Infect Dis 27:1117–1129

    Article  PubMed  CAS  Google Scholar 

  7. Albanese J, Leone M, Bruguerolle B, Ayem M, Lacarelle B, Martin C (2000) Cerebrospinal fluid penetration and pharmacokinetics of vancomycin administered by continuous infusion to mechanically ventilated patients in an Intensive Care Unit. Antimicrob Agents Chemother 44:1356–1358

    Article  PubMed  CAS  Google Scholar 

  8. Moellering RC, Krigstad DJ, Greenblatt DJ (1981) Vancomycin therapy in patients with impaired renal function: a nomogram for dosage. Ann Intern Med 94:343–346

    PubMed  Google Scholar 

  9. Strausbaugh LJ, Murray TW, Sande MA (1981) Comparative penetration of 6 antibiotics into the CSF of rabbits with experimental staphylococcal meningitis. J Antimicrob Chemother 6:363–371

    Article  Google Scholar 

  10. Mackie CE, English HE, Lelievre E, Gordon BH, Genissel P, Robinson BV(1997) Radioimmunoassay for the measurement of S9788 in serum and microdialysis samples. J Pharm Biomed Anal 15:917–928

    Article  PubMed  CAS  Google Scholar 

  11. Rocha LL, Evans CJ, Maidment NT (1997) Amygdala kindling modifies extracellular opioid peptide content in rat hippocampus measured by microdialysis. J Neurochem 68:616–624

    Article  PubMed  CAS  Google Scholar 

  12. Davies MI, Cooper JD, Desmond SS, Lunte CE, Lunte SM (2000) Analytical considerations for microdialysis sampling. Adv Drug Deliv Rev 45:169–188

    Article  PubMed  CAS  Google Scholar 

  13. Plock N, Buerger C, Kloft C (2005) Successful management of discovered pH dependence in vancomycin recovery studies: novel HPLC method for microdialysis and plasma samples. Biomed Chromatogr 19:237–244

    Article  PubMed  CAS  Google Scholar 

  14. Peetermans WE, Hoogeterp JJ, Hazekamp-Van Dokkum AM (1990) Antistaphylococcal activities of teicoplanin and vancomycin in vitro and in experimental infection. Antimicrob Agents Chemother 34:1869–1874

    PubMed  CAS  Google Scholar 

  15. Ackerman BH, Vannier AM, Eudy EB (1992) Analysis of vancomycin time-kill studies with Staphylococcus species by using a curve stripping program to describe the relationship between concentration and pharmacodynamic response. Antimicrob Agents Chemother 36:1766–1769

    PubMed  CAS  Google Scholar 

  16. Stratton CW, Liu C, Weeks S (1987) Activity of LY146032 compared with that of methicillin, cefazolin, cefamandole, cefuroxime, ciprofloxacin, and vancomycin against staphylococci as determined by kill-kinetic studies. Antimicrob Agents Chemother; 31:1210–1215

    PubMed  CAS  Google Scholar 

  17. Iwamoto T, Kagawa Y, Kojima M (2003) Clinical efficacy of therapeutic drug monitoring in patients receiving vancomycin. Biol Pharm Bull 26:876–879

    Article  PubMed  CAS  Google Scholar 

  18. Tobin CM, Darville JM, Thomson AH , Sweeney G, Wilson JF, MacGowan AP, White LO (2002) Vancomycin therapeutic drug monitoring: is there a consensus view? The results of a UK National External Quality Assessment Scheme (UK NEQAS) for Antibiotic Assays questionnaire. J Antimicr Chemotherapy 50:713–718

    Article  CAS  Google Scholar 

  19. De Lange ECM, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting. Clin Pharmacokinet 41:691–703

    Article  PubMed  Google Scholar 

  20. Eftekhar B, Ghodsi M, Nejat F, Ketabchi E, Esmaeeli B (2004) Prophylactic administration of ceftriaxone for the prevention of meningitis after traumatic pneumocephalus: results of a clinical trial. J Neurosurg 101:757–761

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anselmo Caricato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caricato, A., Pennisi, M., Mancino, A. et al. Levels of vancomycin in the cerebral interstitial fluid after severe head injury. Intensive Care Med 32, 325–328 (2006). https://doi.org/10.1007/s00134-005-0015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-005-0015-3

Keywords

Navigation