Skip to main content
Log in

HMR1402, a potassium ATP channel blocker during hyperdynamic porcine endotoxemia: effects on hepato-splanchnic oxygen exchange and metabolism

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To assess the effects of the potassium ATP (KATP) channel blocker HMR1402 (HMR) on systemic and hepato-splanchnic hemodynamics, oxygen exchange and metabolism during hyperdynamic porcine endotoxemia.

Design

Prospective, randomized, controlled study with repeated measures.

Setting

Animal laboratory.

Subjects

Eighteen pigs allocated to receive endotoxin alone (control group, CON, n=10) or endotoxin and HMR (6 mg/kg h−1, n=8).

Interventions

Anesthetized, mechanically ventilated, and instrumented pigs receiving continuous i.v. endotoxin were resuscitated with hetastarch to maintain mean arterial pressure (MAP) >60 mmHg. Twelve hours after starting the endotoxin infusion, they received HMR or its vehicle for another 12 h.

Results

HMR transiently increased MAP by about 15 mmHg, but this effect was only present during the first 1 h of infusion. The HMR decreased cardiac output due to a fall in heart rate, and thereby reduced liver blood flow. While liver O2 delivery and uptake remained unchanged, HMR induced hyperlactatemia [from 1.5 (1.1; 2.0), 1.4 (1.2; 1.8), and 1.2 (0.8; 2.0) to 3.1 (1.4; 3.2), 3.2 (1.6; 6.5), and 3.0 (1.0; 5.5) mmol/l in the arterial, portal and hepatic venous samples, respectively] and further increased arterial [from 8 (3; 13) to 23 (11; 57); p<0.05], portal [from 9 (4; 14) to 23 (14; 39); p<0.05] and hepatic vein [from 7 (0; 15) to 30 (8; 174), p<0.05] lactate/pyruvate ratios indicating impaired cytosolic redox state.

Conclusion

The short-term beneficial hemodynamic effects of KATP channel blockers have to be weighted with the detrimental effect on mitochondrial respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4a–c

Similar content being viewed by others

References

  1. Landry DW, Oliver JA (2001) The pathogenesis of vasodilatory shock. N Engl J Med 345:588–595

    CAS  PubMed  Google Scholar 

  2. Hall S, Turcato S, Clapp L (1996) Abnormal activation of K+ channels underlies relaxation to bacterial lipolysaccharide in rat aorta. Biochem Biophys Res Commun 224:184–190

    Article  CAS  PubMed  Google Scholar 

  3. Chen SJ, Wu CC, Yang SN, Lin CI, Yen MH (2000) Hyperpolarization contributes to vascular hyporeactivity in rats with lipolysaccharide-induced endotoxic shock. Life Sci 68:659–668

    Article  CAS  PubMed  Google Scholar 

  4. Krenz M, Oldenburg O, Wimpee H, Cohen MV, Garlid KD, Critz SD, Downey JM, Benoit JN (2002) Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells. Basic Res Cardiol 97:365–373

    Article  CAS  PubMed  Google Scholar 

  5. Macarthur H, Couri DM, Wilken GH, Westfall TC, Lechner AJ, Matuschak GM, Chen Z, Salvemini D (2003) Modulation of serum cytokine levels by a novel superoxide dismuatse mimetic, M40401, in an Escherichia coli model of septic shock: correlation with preserved circulating catecholamines. Crit Care Med 31:237–245

    CAS  PubMed  Google Scholar 

  6. Wilson AJ, Clapp LH (2002) The molecular site of action of K(ATP) channel inhibitors determines their ability to inhibit iNOS-mediated relaxation in rat aorta. Cardiovasc Res 56:154–163

    Article  CAS  PubMed  Google Scholar 

  7. Landry DW, Oliver JA (1992) The ATP-sensitive K+ channels mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog. J Clin Invest 89:2071–2074

    CAS  PubMed  Google Scholar 

  8. Vanelli G, Sabah NA, Hussain SN, Aguggini G (1995) Glibenclamide, a blocker of ATP-sensitive potassium channels, reverses endotoxin-induced hypotension in pig. Exp Physiol 80:167–170

    CAS  PubMed  Google Scholar 

  9. Wu CC, Thiemermann C, Vane JR (1995) Glibenclamide-induced inhibition of the expression of inductible nitric oxide synthase in cultured macrophages and in the anaesthetized rat. Br J Pharmacol 114:1273–1281

    CAS  PubMed  Google Scholar 

  10. Vanelli G, Hussain SN, Dimori M, Aguggini G (1997) Cardiovascular responses to glibenclamide during endotoxaemia in the pig. Vet Res Commun 21:187–200

    Article  CAS  PubMed  Google Scholar 

  11. Sorrentino R, d’Emmanuele di Villa Bianca R, Lippolis L, Sorrentino L, Autore G, Pinto A (1999) Involvement of ATP-sensitive potassium channels in a model of delayed vascular hyporeactivity induced by lipopolysaccharide in rats. Br J Pharmacol 127:1447–1453

    CAS  PubMed  Google Scholar 

  12. Preiser JC, Zhang H, Debelle F, Fesler P, Abdel Kafi S, Naeije R, Vincent JL (2003) Hemodynamic effects of glibenclamide during endotoxemia: contrasting findings in vitro versus in vivo. Shock 19:223–228

    Article  PubMed  Google Scholar 

  13. Ismail JA, McDonough KH (2001) The role of K+ ATP channels in the control of pre- and post-ischemic left ventricular developed pressure in septic rat hearts. Can J Physiol Pharmacol 79:213–219

    Article  CAS  PubMed  Google Scholar 

  14. Wikstöm BG, Ronquist G, Waldenström A (1996) Glyburide enhancement of lactate production in ischemic heart is modified by preconditioning: an in vivo experimental study in pigs by microdialysis technique. J Cardiovasc Pharmacol 27:622–628

    Article  PubMed  Google Scholar 

  15. Fink MP, Heard SO (1990) Laboratory models of sepsis and septic shock. J Surg Res 49:186–196

    CAS  PubMed  Google Scholar 

  16. Billman GE, Houle MS, Gerlach U, Englers HC, Goegelein HE (2000) The cardioselective ATP-sensitive potassium channel antagonist HMR1402 prevents ischemically induced ventricular fibrillation. Europace 1:B29

    Google Scholar 

  17. Hassoun HT, Kone BC, Mercer DW, Moody FG, Weisbrodt NW, Moore FA (2001) Post-injury multiple organ failure: the role of the gut. Shock 15:1–10

    CAS  Google Scholar 

  18. Iványi Z, Hauser B, Pittner A, Asfar P, Vassilev D, Nalos M, Brückner UB, Szabó C, Radermacher P, Fröba G (2003) Systemic and hepato-splanchnic hemodynamic and metabolic effects of the PARP inhibitor PJ34 during hyperdynamic porcine endotoxemia. Shock 19:415–425

    Article  PubMed  Google Scholar 

  19. Nalos M, Vassilev D, Pittner A, Asfar P, Brückner UB, Schneider EM, Georgieff M, Radermacher P, Fröba G (2003) Sn-mesoporphyrin to inhibit heme oxygenase during long-term hyperdynamic porcine endotoxemia. Shock 19:526–532

    Article  PubMed  Google Scholar 

  20. Stehr A, Ploner F, Tugtekin I, Matejovic M, Theisen M, Zülke C, Georgieff M, Radermacher P, Jauch K-W (2003) Effect of combining nicotinamide as a PARS-inhibitor with selective iNOS Blockade during porcine endotoxemia. Intensive Care Med 29:995–1002

    CAS  PubMed  Google Scholar 

  21. Pittner A, Nalos M, Asfar P, Yang Y, Ince C, Georgieff M, Brückner UB, Radermacher P, Fröba G (2003) Mechanisms of iNOS inhibition-related improvement of gut mucosal acidosis during hyperdynamic porcine endotoxemia. Intensive Care Med 29:312–316

    PubMed  Google Scholar 

  22. Dhein S, Pejman P, Krusemann (2000) Effects of the I(KATP) blockers glibenclamide and HMR1883 on cardiac electrophysiology during ischemia and reperfusion. Eur J Pharmacol 398:273–284

    Article  CAS  PubMed  Google Scholar 

  23. Englert HC, Gerlach U, Goegelein H, Hartung J, Heitsch H, Mania D, Scheidler S (2001) Cardioselective K(ATP) channel blockers derived from a new series of m-anisamidoethylbenzenesulfonylthioureas. J Med Chem 44:1085–1098

    Article  CAS  PubMed  Google Scholar 

  24. Krismer AC, Wenzel V, Voelckel W, Witkiewicz M, Strohmenger HU, Raedler C, Lindner KH (2002) Effect of the cardioselective ATP-sensitive potassium channel inhibitor HMR 1883 in a porcine model of cardiopulmonary resuscitation. Resuscitation 53:299–306

    Article  CAS  PubMed  Google Scholar 

  25. Szabó C, Salzman AL (1996) Inhibition of ATP-activated potassium channels exerts pressor effects and improves survival in a rat model of severe hemorrhagic shock. Shock 5:391–394

    PubMed  Google Scholar 

  26. Salzman AL, Vromen A, Denenberg A, Szabó C (1997) K(ATP)-channel inhibition imporves hemodynamics and cellular energetics in hemorrhagic shock. Am J Physiol 272:H688–H694

    CAS  PubMed  Google Scholar 

  27. Zhao K, Huang X, Liu J, Huang Q, Jin C, Jiang Y, Jin J, Zhao G (2002) New approach to treatment of shock: restitution of vasoreactivity. Shock 18:189–192

    Article  PubMed  Google Scholar 

  28. Billman GE, Avendano CE, Halliwill JR, Burroughs JM (1993) The effects of the ATP-dependent potassium channel antagonist, glyburide, on coronary blood flow and susceptibility to ventricular fibrillation in unanesthetized dogs. J Cardiovasc Pharmacol 21:197–204

    CAS  PubMed  Google Scholar 

  29. Kamigaki M, Ichihara K, Kohgo Y, AbikoY (1995) Effect of glibenclamide on ischemic canine myocardium with glucose infusion. Eur J Pharmacol 287:121–126

    Article  CAS  PubMed  Google Scholar 

  30. de Jaeger A, Proulx F, Yandza T, Dugas MA, Boeuf B, Manika A, Lacroix J, Lambert M (1998) Markers of cellular dysoxia during orthotopic liver transplantation in pigs. Intensive Care Med 24:268–275

    Article  PubMed  Google Scholar 

  31. Leverve XM (1999) From tissue perfusion to metabolic marker: assessing organ competition an co-operation in critically ill patients? Intensive Care Med 25:890–892

    CAS  PubMed  Google Scholar 

  32. Levy B, Mansart A, Bollaert PE, Franck P, Mallie JP (2003) Effects of epinephrine and norepinephrine on hemodynamics, oxidative metabolism, and organ energetics in endotoxemic rats. Intensive Care Med 29:292–300

    PubMed  Google Scholar 

  33. Thomas DW, Gilligan JE, Edwards JB, Edwards RG (1972) Lactic acidosis and osmotic diuresis produced by xylitol infusion. Med J Aust 1:1246–1248

    CAS  PubMed  Google Scholar 

  34. Harkema JM, Chaudry ICH (1992) Magnesium-adenosine triphophate in the treatment of shock, ischemia, and sepsis. Crit Care Med 20:263–275

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre Hospitalo-Universitaire, Angers, France (P. Asfar), the Deutscher Akademische Austischdienst (Z. Iványi), the Alexander-von-Humboldt-Stiftung (D. Vassilev), the European Society of Intensive Care Medicine (B. Hauser), the Boehringer Ingelheim Fonds (M. Nalos), and Aventis Pharma. HMR1402 was kindly provided by K. Wirth (Aventis Pharma, Germany). We are indebted to W. Siegler, T. Schulz, U. Ehrmann, A. Derr, and M. Miersch for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Radermacher.

Additional information

P. Asfar and Z. Iványi equally contributed to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asfar, P., Iványi, Z., Bracht, H. et al. HMR1402, a potassium ATP channel blocker during hyperdynamic porcine endotoxemia: effects on hepato-splanchnic oxygen exchange and metabolism. Intensive Care Med 30, 957–964 (2004). https://doi.org/10.1007/s00134-004-2258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-004-2258-9

Keywords

Navigation