Intensive Care Medicine

, Volume 30, Issue 4, pp 536–555 | Cite as

Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock

  • R. Phillip Dellinger
  • Jean M. Carlet
  • Henry Masur
  • Herwig Gerlach
  • Thierry Calandra
  • Jonathan Cohen
  • Juan Gea-Banacloche
  • Didier Keh
  • John C. Marshall
  • Margaret M. Parker
  • Graham Ramsay
  • Janice L. Zimmerman
  • Jean-Louis Vincent
  • M. M. Levy
Special Article



To develop management guidelines for severe sepsis and septic shock that would be of practical use for the bedside clinician, under the auspices of the Surviving Sepsis Campaign, an international effort to increase awareness and improve outcome in severe sepsis.


The process included a modified Delphi method, a consensus conference, several subsequent smaller meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. The modified Delphi methodology used for grading recommendations built upon a 2001 publication sponsored by the International Sepsis Forum. We undertook a systematic review of the literature graded along 5 levels to create recommendation grades from A–E, with A being the highest grade. Pediatric considerations were provided to contrast adult and pediatric management.


Participants included 44 critical care and infectious disease experts representing 11 international organizations.


A total of 46 recommendations plus pediatric management considerations.


Evidence-based recommendations can be made regarding many aspects of the acute management of sepsis and septic shock that will hopefully translate into improved outcomes for the critically ill patient. The impact of these guidelines will be formally tested and guidelines updated annually, and even more rapidly when some important new knowledge becomes available.


Sepsis Severe sepsis Septic shock Sepsis syndrome Infection Guidelines Evidence-based medicine Surviving Sepsis Campaign 



Founding of the Surviving Sepsis Campaign. The ESICM, SCCM and International Sepsis Forum have established the Surviving Sepsis Campaign with the aim of improving the care of septic patients. The first phase of the Campaign was built around the Barcelona ESICM congress and included the initial Barcelona Declaration, a media campaign that identified sepsis as a killer and the need to make progress in public awareness and to reduce mortality, and two surveys performed among physicians. The cost of phase I was approximately EUR 553,227, and was supported by unrestricted educational grants from Eli Lilly (94%), Edwards (3%) and Baxter (3%). Producing the present guidelines document was the phase II of the Campaign. For this process, the sponsor companies have been entirely separated from the process by which the guidelines were developed by the many contributors, whose conflicts of interest have been collected in accordance with SCCM guidance (see document). The costs for this phase included mainly the costs of the meeting, teleconference and website update, amounted to approximately EUR 125,006, and were beared by unrestricted educational grants from Eli Lilly (90%) and Edwards (10%). Most of the expense for this effort has been time by the committee who received no reimbursement.

Supplementary material

supp.pdf (151 kb)
Supplementary Material (PDF 146 KB)


  1. 1.
    Dellinger RP (2003) Cardiovascular management of septic shock. Crit Care Med 31:946–955PubMedGoogle Scholar
  2. 2.
    Friedman G, Silva E, Vincent JL (1998) Has the mortality of septic shock changed with time? Crit Care Med 26:2078–2086PubMedGoogle Scholar
  3. 3.
    Sackett DL (1989) Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest 95:2S–4SPubMedGoogle Scholar
  4. 4.
    Sprung CL, Bernard GR, Dellinger RP (2001) Introduction. Intensive Care Med 27 [Suppl] :S1-S2Google Scholar
  5. 5.
    Rivers E, Nguyen B, Havstad S et al. (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedGoogle Scholar
  6. 6.
    Weinstein MP, Reller LP, Murphy JR, Lichtenstein KA (1983) The clinical significance of positive blood cultures: A comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. I. Laboratory and epidemiologic observations. Rev Infect Dis 5:35–53PubMedGoogle Scholar
  7. 7.
    Blot F, Schmidt E, Nitenberg G, Tancrède C, Laplanche A, Andremont A (1998) Earlier positivity of central venous versus peripheral blood cultures is highly predictive of catheter-related sepsis. J Clin Microbiol 36:105–109PubMedGoogle Scholar
  8. 8.
    Mermel LA, Maki DG (1993) Detection of bacteremia in adults: consequences of culturing an inadequate volume of blood. Ann Intern Med 119:270–272PubMedGoogle Scholar
  9. 9.
    McCabe WR, Jackson GG (1962) Gram negative bacteremia. Arch Intern Med 110:92–100Google Scholar
  10. 10.
    Kreger BE, Craven DE, McCabe WR (1980) Gram negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 68:344–355PubMedGoogle Scholar
  11. 11.
    Leibovici L, Shraga I, Drucker M, Konigsberger H, Samra Z, Pitlik SD (1998) The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med 244:379–386CrossRefPubMedGoogle Scholar
  12. 12.
    Ibrahim EH, Sherman G, Ward S, Ward S, Fraser VJ, Kollef MH (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118:146–155PubMedGoogle Scholar
  13. 13.
    Hatala R, Dinh T, Cook DJ (1996) Once-daily aminoglycoside dosing in immunocompetent adults: a meta-analysis. Ann Intern Med 124:717–725PubMedGoogle Scholar
  14. 14.
    Ali MZ, Goetz MB (1997) A meta-analysis of the relative efficacy and toxicity of single daily dosing versus multiple daily dosing of aminoglycosides. Clin Infec Dis 24:796–809Google Scholar
  15. 15.
    Amsden GW, Ballow CH, Bertino JS (2000) Pharmacokinetics and pharmacodynamcis of anti-infective agents. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases. Churchill Livingstone, Philadelphia, pp 253–261Google Scholar
  16. 16.
    Hyatt JM, McKinnon PS, Zimmer GS, Schentag JJ (1995) The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcomes. Focus on antibacterial agents. Clin Pharmacokinet 28:143–160Google Scholar
  17. 17.
    Jimenez MF, Marshall JC (2001) Source control in the management of sepsis. Intensive Care Med 27:S49–S62PubMedGoogle Scholar
  18. 18.
    Bufalari A, Giustozzi G, Moggi L (1996) Postoperative intraabdominal abscesses: percutaneous versus surgical treatment. Acta Chir Belg 96:197–200PubMedGoogle Scholar
  19. 19.
    Moss RL, Musemeche CA, Kosloske AM (1996) Necrotizing fascitis in children: prompt recognition and aggressive therapy improve survival. J Pediatr Surg 31:1142–1146PubMedGoogle Scholar
  20. 20.
    Centers for Disease Control and Prevention (2002) Guidelines for the prevention of intravascular catheter-related infections. MMWR Morb Mortal Wkly Rep 51:1–29Google Scholar
  21. 21.
    O’Grady NP, Alexander M, Dellinger EPet al. (2002) Guidelines for the prevention of intravascular catheter-related infections. Infect Control Hosp Epidemiol 23:759–769PubMedGoogle Scholar
  22. 22.
    Choi PT, Yip G, Quinonez LG, Quinonez LG, Cook DJ (1999) Crystalloids vs. colloids in fluid resuscitation: a systematic review. Crit Care Med 27:200–210PubMedGoogle Scholar
  23. 23.
    Cook D, Guyatt G (2001) Colloid use for fluid resuscitation: evidence and spin. Ann Intern Med 135:205–208PubMedGoogle Scholar
  24. 24.
    Schierhout G, Roberts I (1998) Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomized trials. BMJ 316:961–964PubMedGoogle Scholar
  25. 25.
    Hollenberg SM, Ahrens TS, Astiz ME, (1999) Practice parameters for hemodynamic support of sepsis in adult patients. Crit Care Med 27:639–660PubMedGoogle Scholar
  26. 26.
    LeDoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28:2729–2732CrossRefPubMedGoogle Scholar
  27. 27.
    Regnier B, Rapin M, Gory G, Lemaire F, Teisseire B, Harari A (1977) Haemodynamic effects of dopamine in septic shock. Intensive Care Med 3:47–53PubMedGoogle Scholar
  28. 28.
    Martin C, Papazian L, Perrin G, Saux P, Gouin F (1993) Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest 103:1826–1831PubMedGoogle Scholar
  29. 29.
    Martin C, Viviand X, Leone M, Thirion X (2000) Effect of norepinephrine on the outcome of septic shock. Crit Care Med 28:2758–2765Google Scholar
  30. 30.
    De Backer D, Creteur J, Silva E, Vincent JL (2003) Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med 31:1659–1667PubMedGoogle Scholar
  31. 31.
    Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J (2000) Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 356:2139–2143PubMedGoogle Scholar
  32. 32.
    Kellum J, Decker J (2003) Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med 29:1526–1531Google Scholar
  33. 33.
    Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D (2003) Circulating vasopressin levels in septic shock. Crit Care Med 31:1752–1758CrossRefPubMedGoogle Scholar
  34. 34.
    Holmes CL, Patel BM, Russell JA, Russell JA, Walley KR (2001) Physiology of vasopressin relevant to management of septic shock. Chest 120:989–1002PubMedGoogle Scholar
  35. 35.
    Malay MB, Ashton RC, Landry DW, Townsend RN (1999) Low-dose vasopressin in the treatment of vasodilatory septic shock. J Trauma 47:699–705PubMedGoogle Scholar
  36. 36.
    Holmes CL, Walley KR, Chittock DR, Lehman T, Russell JA (2001) The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med 27:1416–1421PubMedGoogle Scholar
  37. 37.
    Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333:1025–1032PubMedGoogle Scholar
  38. 38.
    Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722PubMedGoogle Scholar
  39. 39.
    Annane D, Sebille V, Charpentier C et al. (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288:862–871PubMedGoogle Scholar
  40. 40.
    Briegel J, Forst H, Haller M et al. (1999) Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med 27:723–732PubMedGoogle Scholar
  41. 41.
    Bollaert PE, Charpentier C, Levy B, Debouverie M, Audibert G, Larcan A (1998) Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med 26:645–650PubMedGoogle Scholar
  42. 42.
    Annane D, Sebille V, Troche G, Raphael JC, Gajdos P, Bellissant E (2000) A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 283:1038–1045PubMedGoogle Scholar
  43. 43.
    Annane D, Cavaillon JM (2003) Corticosteroids in sepsis: from bench to bedside? Shock 20:197–207PubMedGoogle Scholar
  44. 44.
    Marik PE, Zaloga GP (2003) Adrenal insufficiency during septic shock. Crit Care Med 31:141–145PubMedGoogle Scholar
  45. 45.
    Cooper MS, Stewart PM (2003) Corticosteroid insufficiency in acutely ill patients. N Engl J Med 348:727–734CrossRefPubMedGoogle Scholar
  46. 46.
    Keh D, Boehnke T, Weber-Carstens S et al. (2003) Immunologic and hemodynamic effects of “low-dose” hydrocortisone in septic shock: a double-blind, randomized, placebo-controlled, crossover study. Am J Respir Crit Care Med 167:512–520CrossRefPubMedGoogle Scholar
  47. 47.
    Bone RC, Fisher CJ, Clemmer TP (1987) A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317:653–658PubMedGoogle Scholar
  48. 48.
    Cronin L, Cook DJ, Carlet J, Heyland DK, King D, Lansang MA, Fisher CJ Jr (1995) Corticosteroid treatment for sepsis: a critical appraisal and meta-analysis of the literature. Crit Care Med 23:1430–1439PubMedGoogle Scholar
  49. 49.
    The Veterans Administration Systemic Sepsis Cooperative Study Group (1987) Effect on high-dose glucocorticoid therapy on mortality in patients with clinical signs of sepsis. N Engl J Med 317:659–665Google Scholar
  50. 50.
    Bernard GR, Vincent JL, Laterre PF et al. Recombinant Human Protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709PubMedGoogle Scholar
  51. 51.
    Hébert PC, Wells G, Blajchman MA et al. (1999) A multicenter, randomized, controlled clinical trial of transfusion in critical care. N Engl J Med 340:409–417PubMedGoogle Scholar
  52. 52.
    Marik PE, Sibbald WJ (1993) Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA 269:3024–3029PubMedGoogle Scholar
  53. 53.
    Lorente JA, Landín L, De Pablo R, Renes E, Rodriguez-Diaz R, Liste D (1993) Effects of blood transfusion on oxygen transport variables in severe sepsis. Crit Care Med 21:1312–1318PubMedGoogle Scholar
  54. 54.
    Corwin HL, Gettinger A, Rodriguez RM et al. (1999) Efficacy of recombinant human erythropoietin in the critically ill patient: a randomized double-blind, placebo-controlled trial. Crit Care Med 27:2346–2350PubMedGoogle Scholar
  55. 55.
    Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Shapiro MJ, Corwin MJ, Colton T; EPO Critical Care Trials Group (2002) Efficacy of recombinant human erythropoietin in critically ill patients. JAMA 288:2827–2835CrossRefPubMedGoogle Scholar
  56. 56.
    Fresh-Frozen Plasma, Cryoprecipitate, and Platelets Administration Practice Guidelines Development Task Force of the College of American Pathologists (1994) Practice parameter for the use of fresh-frozen plasma, cryoprecipitate, and platelets. JAMA 271:777–781PubMedGoogle Scholar
  57. 57.
    Report of the Working Group (1997) Guidelines for red blood cell and plasma transfusion for adults and children. CMAJ 156 [Suppl]:S1–24Google Scholar
  58. 58.
    Practice Guidelines for Blood Component Therapy (1996) A report by the American Society of Anaesthesiologists Task Force on Blood Component Therapy. Anesthesiology 84:732–747PubMedGoogle Scholar
  59. 59.
    Warren BL, Eid A, Singer P et al. (2001) High-dose antithrombin III in severe sepsis. A randomized controlled trial. JAMA 286:1869–1878PubMedGoogle Scholar
  60. 60.
    Amato MB, Barbas CS, Medeiros DM, et al. (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedGoogle Scholar
  61. 61.
    Stewart TE, Meade MO, Cook DJ et al. (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure- and Volume-Limited Ventilation Strategy Group. N Engl J Med 338:355–361PubMedGoogle Scholar
  62. 62.
    Brochard L, Roudat-Thoraval F et al. (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trial Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838PubMedGoogle Scholar
  63. 63.
    Brower RG, Shanholtz CB, Fessler HE et al. (1999) Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 27:1492–1498PubMedGoogle Scholar
  64. 64.
    Brower RG, Fessler HE (2000) Mechanical ventilation in acute lung injury and acute respiratory distress syndrome. Clin Chest Med 21:491–510PubMedGoogle Scholar
  65. 65.
    Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 166:1510–1514Google Scholar
  66. 66.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308PubMedGoogle Scholar
  67. 67.
    Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22:1568–1578PubMedGoogle Scholar
  68. 68.
    Bidani A, Tzouanakis AE, Cardenas VJ, Zwischenberger JB (1994) Permissive hypercapnia in acute respiratory failure. JAMA 272:957–962PubMedGoogle Scholar
  69. 69.
    Marini JJ, Ravenscraft SA (1992) Mean airway pressure: physiologic determinants and clinical importance–Part I: physiologic determinants and measurements. Crit Care Med 20:1461–1472PubMedGoogle Scholar
  70. 70.
    Gattinoni L, Marcolin R, Caspani ML, Fumagalli R, Mascheroni D, Pesenti A (1985) Constant mean airway pressure with different patterns of positive pressure breathing during the adult respiratory distress syndrome. Bull Eur Physiopathol Respir 21:275–279PubMedGoogle Scholar
  71. 71.
    Pesenti A, Marcolin R, Prato P, Borelli M, Riboni A, Gattinoni L (1985) Mean airway pressure vs. positive end-expiratory pressure during mechanical ventilation. Crit Care Med 13:34–37PubMedGoogle Scholar
  72. 72.
    Stocker R, Neff T, Stein S, Ecknauer E, Trentz O, Russi E (1997) Prone positioning and low-volume pressure-limited ventilation improve survival in patients with severe ARDS. Chest 111:1008–1017PubMedGoogle Scholar
  73. 73.
    Lamm WJ, Graham MM, Albert RK (1994) Mechanism by which prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med 150:184–193PubMedGoogle Scholar
  74. 74.
    Jolliet P, Bulpa P, Chevrolet JC (1998) Effects of the prone position on gas exchange and hemodynamics in severe acute respiratory distress syndrome. Crit Care Med 26:1977–1985PubMedGoogle Scholar
  75. 75.
    Gattinoni L, Tognoni G, Pesenti A et al. Prone-Supine Study Group (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345:568–573PubMedGoogle Scholar
  76. 76.
    Chatte G, Sab JM, Dubois JM, Sirodot M, Gaussorgues P, Robert D (1997) Prone position in mechanically ventilated patients with severe acute respiratory failure. Am J Respir Crit Care Med 155:473–478PubMedGoogle Scholar
  77. 77.
    Drakulovic M, Torres A, Bauer T, Nicolas J, Nogue S, Ferrer M (1999) Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet 354:1851–1858PubMedGoogle Scholar
  78. 78.
    Esteban A, Alia I, Tobin MJ et al. (1999) Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med 159:512–518PubMedGoogle Scholar
  79. 79.
    Ely EW, Baker AM, Dunagan DP et al. (1996) Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med 335:1864–1869PubMedGoogle Scholar
  80. 80.
    Esteban A, Alia I, Gordo F et al. (1997) Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. The Spanish Lung Failure Collaborative Group. Am J Respir Crit Care Med 156:459–465PubMedGoogle Scholar
  81. 81.
    Kollef MH, Levy NT, Ahrens TS, Schaiff R, Prentice D, Sherman G (1998) The use of continuous IV sedation is associated with prolongation of mechanical ventilation. Chest 114:541–548PubMedGoogle Scholar
  82. 82.
    Kress JP, Pohlman AS, O’Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342:1471–1477PubMedGoogle Scholar
  83. 83.
    Brook AD, Ahrens TS, Schaiff R, Prentice D, Sherman G, Shannon W, Kollef MH (1999) Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med 27:2609–2615PubMedGoogle Scholar
  84. 84.
    Giostra E, Magistris MR, Pizzolato G, Cox J, Chevrolet JC (1994) Neuromuscular disorder in intensive care unit patients treated with pancuronium bromide. Occurrence in a cluster group of seven patients and two sporadic cases, with electrophysiologic and histologic examination. Chest 106:210–220PubMedGoogle Scholar
  85. 85.
    Rossiter A, Souney PF, McGowan S, Carvajal P (1991) Pancuronium-induced prolonged neuromuscular blockade. Crit Care Med 19:1583–1587PubMedGoogle Scholar
  86. 86.
    Partridge BL, Abrams JH, Bazemore C, Rubin R (1990) Prolonged neuromuscular blockade after long-term infusion of vecuronium bromide in the intensive care unit. Crit Care Med 18:1177–1179PubMedGoogle Scholar
  87. 87.
    Vanderheyden BA, Reynolds HN, Gerold KB, Emanuele T (1992) Prolonged paralysis after long-term vecuronium infusion. Crit Care Med 20:304–307PubMedGoogle Scholar
  88. 88.
    Meyer KC, Prielipp RC, Grossman JE, Coursin DB (1994) Prolonged weakness after infusion of atracurium in two intensive care unit patients. Anesth Analg 78:772–774Google Scholar
  89. 89.
    Manthous CA, Chatila W (1994) Prolonged weakness after withdrawal of atracurium. Am J Resp Crit Care Med 150:1441–1443PubMedGoogle Scholar
  90. 90.
    Prielipp RC, Coursin DB, Scuderi PE et al. (1995) Comparison of the infusion requirements and recovery profiles of vecuronium and cisatracurium 51W89 in intensive care unit patients. Anesth Analg 81:3–12PubMedGoogle Scholar
  91. 91.
    Brandom BW, Yellon FF, Lloyd ME et al. (1997) Recovery from doxacurium infusion administered to produce immobility for more than four days in pediatric patients in the intensive care unit. Anesth Analg 84:307–314Google Scholar
  92. 92.
    Rudis MI, Sikora CA, Angus E, Peterson E, Popovich J Jr, Hyzy R, Zarowitz BJ (1997) A prospective, randomized, controlled evaluation of peripheral nerve stimulation versus standard clinical dosing of neuromuscular blocking agents in critically ill patients. Crit Care Med 25:575–583Google Scholar
  93. 93.
    Frankel H, Jeng J, Tilly E, St Andre A, Champion H (1996) The impact of implementation of neuromuscular blockade monitoring standards in a surgical intensive care unit. Am Surg 62:503–506PubMedGoogle Scholar
  94. 94.
    Berghe G van den, Wouters P, Weekers F et al. (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345:1359–1367PubMedGoogle Scholar
  95. 95.
    Finney SJ, Zekveld C, Elia A, Evans TW (2003) Glucose control and mortality in critically ill patients. JAMA 290:2041–2047CrossRefPubMedGoogle Scholar
  96. 96.
    Berghe G Van den, Wouters PJ, Bouillon R et al. (2003) Outcome benefit of intensive insulin therapy in the critically ill: insulin dose versus glycemic control. Crit Care Med 31:359–366PubMedGoogle Scholar
  97. 97.
    Klein S, Kinney J, Jeejeebhoy K, Alpers D, Hellerstein M, Murray M, Twomey P (1997) Nutrition support in clinical practice: review of published data and recommendations for future research directions. A summary of a conference sponsored by the National Institutes of Health, American Society for Parenteral and Enteral Nutrition, and American Society for Clinical Nutrition. Am J Clin Nutr 66:683–706PubMedGoogle Scholar
  98. 98.
    Mehta RL; McDonald B, Gabbai FB, Pahl M, Pascual MT, Farkas A, Kaplan RM; Collaborative Group for Treatment of ARF in the ICU (2001) A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int 60:1154–1163PubMedGoogle Scholar
  99. 99.
    Kellum J, Angus DC, Johnson JP, Leblanc M, Griffin M, Ramakrishnan N, Linde-Zwirble WT (2002) Continuous versus intermittent renal replacement therapy: a meta-analysis. Intensive Care Med 28:29–37CrossRefGoogle Scholar
  100. 100.
    Cooper DJ, Walley KR, Wiggs BR, Russell JA (1990) Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis: a prospective, controlled clinical study. Ann Intern Med 112:492–498PubMedGoogle Scholar
  101. 101.
    Mathieu D, Neviere R, Billard V, Fleyfel M, Wattel F (1991) Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med 19:1352–1356PubMedGoogle Scholar
  102. 102.
    Cade JF (1982) High risk of the critically ill for venous thromboembolism. Crit Care Med 10:448–450PubMedGoogle Scholar
  103. 103.
    Belch JJ, Lowe GD, Ward AG, Forbes CD, Prentice CR (1981) Prevention of deep vein thrombosis in medical patients by low-dose heparin. Scott Med J 26:115–117PubMedGoogle Scholar
  104. 104.
    Samama MM, Cohen AT, Darmon JY et al. (1999) A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. Prophylaxis in Medical Patients with Enoxaparin Study Group. N Engl J Med 341:793–800CrossRefPubMedGoogle Scholar
  105. 105.
    Borrero E, Bank S, Margolis I, Schulman ND, Chardavoyne R (1985) Comparison of antacid and sucralfate in the prevention of gastrointestinal bleeding in patients who are critically ill. Am J Med 79:62–64Google Scholar
  106. 106.
    Bresalier RS, Grendell JH, Cello JP, Meyer AA (1987) Sucralfate versus titrated antacid for the prevention of acute stress-related gastrointestinal hemorrhage in critically ill patients. Am J Med 83:110–116Google Scholar
  107. 107.
    Cook D, Guyatt G, Marshall J et al. (1998) A comparison of sucralfate and ranitidine for the prevention of upper gastrointestinal bleeding in patients requiring mechanical ventilation. Canadian Critical Care Trials Group. N Engl J Med 338:791–797PubMedGoogle Scholar
  108. 108.
    Stothert JC, Simonowitz DA, Dellinger EP et al. (1980) Randomized prospective evaluation of cimetidine and antacid control of gastric pH in the critically ill. Ann Surg 192:169–174PubMedGoogle Scholar
  109. 109.
    Pollard AJ, Britto J, Nadel S, DeMunter C, Habibi P, Levin M (1999) Emergency management of meningococcal disease. Arch Dis Child 80:290–296PubMedGoogle Scholar
  110. 110.
    Kanter RK, Zimmerman JJ, Strauss RH, Stoeckel KA (1986) Pediatric emergency intravenous access. Evaluation of a protocol. Am J Dis Child 140:132–134PubMedGoogle Scholar
  111. 111.
    Ngo NT, Cao XT, Kneen R et al. (2001) Acute management of dengue shock syndrome: a randomized double-blind comparison of 4 intravenous fluid regimens in the first hour. Clin Infect Dis 32:204–213CrossRefPubMedGoogle Scholar
  112. 112.
    Carcillo JA, Davis AL, Zaritsky A (1991) Role of early fluid resuscitation in pediatric septic shock. JAMA 266:1242–1245CrossRefPubMedGoogle Scholar
  113. 113.
    Powell KR, Sugarman LI, Eskenazi AE, Woodin KA, Kays MA, McCormick KL, Miller ME, Sladek CD (1990) Normalization of plasma arginine vasopressin concentrations when children with meningitis are given maintenance plus replacement fluid therapy. J Pediatr 117:515–522PubMedGoogle Scholar
  114. 114.
    Ceneviva G, Paschall JA, Maffei F, Carcillo JA (1998) Hemodynamic support in fluid-refractory pediatric septic shock. Pediatrics 102:e19PubMedGoogle Scholar
  115. 115.
    Keeley SR, Bohn DJ (1988) The use of inotropic and afterload-reducing agents in neonates. Clin Perinatol 15:467–489PubMedGoogle Scholar
  116. 116.
    Roberts JD Jr, Fineman JR, Morin FC 3rd et al. (1997) Inhaled nitric oxide and persistent pulmonary hypertension of the new born. Inhaled Nitric Oxide Study Group. N Engl J Med 336:605–610PubMedGoogle Scholar
  117. 117.
    Barton P, Garcia J, Kouatli A, Kitchen L, Zorka A, Lindsay C, Lawless S, Giroir B (1996) Hemodynamic effects of i.v. milrinone lactate in pediatric patients with septic shock. A prospective, double-blinded, randomized, placebo-controlled, interventional study. Chest 109:1302–1312PubMedGoogle Scholar
  118. 118.
    Lindsay CA, Barton P, Lawless S, Kitchen L, Zorka A, Garcia J, Kouatli A, Giroir B (1998) Pharmacokinetics and pharmacodynamics of milrinone lactate in pediatric patients with septic shock. J Pediatr 132:329–334PubMedGoogle Scholar
  119. 119.
    Irazuzta JE, Pretzlaff RK, Rowin ME (2001) Amrinone in pediatric refractory septic shock: an open-label pharmacodynamic study. Pediatr Crit Care Med 2:24–28CrossRefPubMedGoogle Scholar
  120. 120.
    Lauterbach R, Pawlik D, Kowalczyk D, Ksycinski W, Helwich E, Zembala M (1999) Effect of the immunomodulating agent, pentoxifylline, in the treatment of sepsis in prematurely delivered infants: a placebo-controlled, double-blind trial. Crit Care Med 27:807–814CrossRefPubMedGoogle Scholar
  121. 121.
    Carcillo JA, Fields AI, American College of Critical Care Medicine Task Force Committee Members (2002) Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock. Crit Care Med 30:1365–1378Google Scholar
  122. 122.
    De Kleijn ED, Joosten KF, Van Rijn B, Westerterp M, De Groot R, Hokken-Koelega AC, Hazelzet JA (2002) Low serum cortisol in combination with high adrenocorticotrophic hormone concentrations are associated with poor outcome in children with severe meningococcal disease. Pediatr Infect Dis J 21:330–336CrossRefPubMedGoogle Scholar
  123. 123.
    Riordan FA, Thomson AP, Ratcliffe JM, Sills JA, Diver MJ, Hart CA (1999) Admission cortisol and adrenocorticotrophic hormone levels in children with meningococcal disease: evidence of adrenal insufficiency? Crit Care Med 27:2257–2261PubMedGoogle Scholar
  124. 124.
    Min M, U T, Aye M, Shwe TN, Swe T (1975) Hydrocortisone in the management of dengue shock syndrome. Southeast Asian J Trop Med Public Health 6:573–579PubMedGoogle Scholar
  125. 125.
    Sumarmo, Talogo W, Asrin A, Isnuhandojo B, Sahudi A (1982) Failure of hydrocortisone to affect outcome in dengue shock syndrome. Pediatrics 69:45–49PubMedGoogle Scholar
  126. 126.
    Hazelzet JA, Kleijn ED de, Groot R de (2001) Endothelial protein C activation in meningococcal sepsis. N Engl J Med 345:1776–1777CrossRefGoogle Scholar
  127. 127.
    Kleijn ED de, Groot R de, Hack CE, Mulder PG, Engl W, Moritz B, Joosten KF, Hazelzet JA (2003) Activation of protein C following infusion of protein C concentrate in children with severe meningococcal sepsis and purpura fulminans: a randomized, double-blinded, placebo-controlled, dose-finding study. Crit Care Med 31:1839–1847CrossRefPubMedGoogle Scholar
  128. 128.
    Bilgin K, Yaramis A, Haspolat K, Tas MA, Gunbey S, Derman O (2001) A randomized trial of granulocyte-macrophage colony-stimulating factor in neonates with sepsis and neutropenia. Pediatrics 107:36–41PubMedGoogle Scholar
  129. 129.
    La Gamma EF, De Castro MH (2002) What is the rationale for the use of granulocyte and granulocyte-macrophage colony-stimulating factors in the neonatal intensive care unit? Acta Paediatr Suppl 91:109–116CrossRefPubMedGoogle Scholar
  130. 130.
    Chaïbou M, Tucci M, Dugas MA, Farrell CA, Proulx F, Lacroix J (1998) Clinically significant upper gastrointestinal bleeding acquired in a pediatric intensive care unit: a prospective study. Pediatrics 102:933–938PubMedGoogle Scholar
  131. 131.
    Gauvin F, Dugas M, Chaïbou M, Morneau S, Lebel D, Lacroix J (2001) The impact of clinically significant upper gastrointestinal bleeding in a pediatric intensive care unit. Pediatr Crit Care Med 2:294–298CrossRefPubMedGoogle Scholar
  132. 132.
    Alejandria MM, Lansang MA, Dans LF, Mantaring JB (2002) Intravenous immunoglobulin for treating sepsis and septic shock. Cochrane Database Syst Rev (1):CD001090Google Scholar
  133. 133.
    Meyer DM, Jessen ME (1997) Results of extracorporeal membrane oxygenation in children with sepsis. The Extracorporeal Life Support Organization. Ann Thorac Surg 63:756–761CrossRefPubMedGoogle Scholar
  134. 134.
    Goldman AP, Kerr SJ, Butt W, Marsh MJ, Murdoch IA, Paul T, Firmin RK, Tasker RC, Macrae DJ (1997) Extracorporeal support for intractable cardiorespiratory failure due to meningococcal disease. Lancet 349:466–469PubMedGoogle Scholar
  135. 135.
    Brochard L, Rauss A, Benito S, Conti G, Mancebo J, Rekik N, Gasparetto A, Lemaire F (1994) Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med 150:896–903PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • R. Phillip Dellinger
    • 1
    • 15
  • Jean M. Carlet
    • 2
  • Henry Masur
    • 3
  • Herwig Gerlach
    • 4
  • Thierry Calandra
    • 5
  • Jonathan Cohen
    • 6
  • Juan Gea-Banacloche
    • 8
  • Didier Keh
    • 7
  • John C. Marshall
    • 9
  • Margaret M. Parker
    • 10
  • Graham Ramsay
    • 11
  • Janice L. Zimmerman
    • 12
  • Jean-Louis Vincent
    • 13
  • M. M. Levy
    • 14
  1. 1.Section of Critical Care MedicineCooper University HospitalCamdenUSA
  2. 2.Service de la Réanimation PolyvalenteFondation Hôpital Saint-JosephParisFrance
  3. 3.Critical Care MedicineNational Institutes of HealthBethesdaUSA
  4. 4.Dept. for Anesthesiology & Critical Care MedicineVivantes-Klinikum NeukoellnBerlinGermany
  5. 5.Laboratoire de Maladies Infectieuses Dept. de Medecine InterneCentre Hospitalier Universitaire VaudoisLausanneSwitzerland
  6. 6.Brighton and Sussex Medical SchoolFalmerUnited Kingdom
  7. 7.Clinic of Anesthesiology and Surgical Intensive Care MedicineChariteBerlinGermany
  8. 8.Infectious Disease Section, Experimental Transplantation and Immunology BranchNational Cancer Institute, National Institutes of HealthBethesdaUSA
  9. 9.Toronto General HospitalTorontoCanada
  10. 10.PediatricsSUNY at Stony BrookStony BrookUSA
  11. 11.University HospitalMastrichtNetherlands
  12. 12.Department of MedicineBaylor College of MedicineHoustonUSA
  13. 13.Department of Intensive CareErasme University HospitalBrusselsBelgium
  14. 14.Brown University School of MedicineProvidenceUSA
  15. 15.Cooper Health SystemsCamdenUSA

Personalised recommendations