Skip to main content
Log in

Effects of dopexamine in comparison with fenoterol on carbohydrate, fat and protein metabolism in healthy volunteers

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

In critically ill patients adrenergic agonists are used to treat haemodynamic disorders. Their metabolic actions should be considered in controlling metabolic homeostasis. Dopexamine has assumed effects on carbohydrate, fat and protein metabolism. The aim of this study was to define its metabolic actions and compare these with those of fenoterol by using a stable isotope dilution technique.

Design

Prospective, randomized experimental study.

Setting

Experimental section of a university anaesthesiology department.

Participants

Twenty-seven healthy male volunteers in three groups with nine participants each.

Interventions

Participants received a 4-h infusion of dopexamine (2.25 µg/kg per min), fenoterol (at least 0.025 µg/kg per min) or saline.

Measurements and results

Before and every 80 min during drug infusion, we measured endogenous glucose production and the plasma appearance rates for leucine and urea. In addition, we measured plasma concentrations of glucose, lactate, free fatty acids (FFAs), noradrenaline, adrenaline, insulin, glucagon and potassium. Endogenous glucose production did not differ among the groups. Glucose plasma concentration and glucose clearance remained constant during the dopexamine infusion. Fenoterol increased glucose plasma concentration and decreased glucose clearance. Lactate, FFAs, insulin and noradrenaline plasma concentrations were increased and the rate of leucine appearance was decreased by both drugs. The rate of urea appearance did not differ from the control group.

Conclusions

Dopexamine has no or only weak effects on carbohydrate metabolism, its effects on fat and protein metabolism are comparable to those of fenoterol. This metabolic profile may be advantageous in increasing cardiac output in patients with impaired glucose tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R A (1995) Trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333:1025–1032

    CAS  PubMed  Google Scholar 

  2. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    PubMed  Google Scholar 

  3. Sandham JD, Hull RD, Brant RF, Knox LF, Pineo GF, Doig CJ, Laporta DP, Viner S, Passerini L, Devitt H, Jacka M (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high risk surgical patients. N Engl J Med 348:5–14

    Google Scholar 

  4. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367

    PubMed  Google Scholar 

  5. Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR (2001) Reversal of catabolism by beta-blockade after severe burns. N Engl J Med 345:1223–1229

    CAS  PubMed  Google Scholar 

  6. Clutter WE, Bier DM, Shah SD, Cryer PE (1980) Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest 66:94–101

    CAS  PubMed  Google Scholar 

  7. Galster AD, Clutter WE, Cryer PE, Collins JA, Bier DM (1981) Epinephrine plasma thresholds for lipolytic effects in man. J Clin Invest 67:1729–1738

    CAS  PubMed  Google Scholar 

  8. Silverberg AB, Shah SD, Haymond MW, Cryer PE (1978) Norepinephrine: hormone and neurotransmitter in man. Am J Physiol 234:E252–E256

    CAS  PubMed  Google Scholar 

  9. Ensinger H, Träger K, Geisser W, Anhäupl T, Ahnefeld FW, Vogt J, Georgieff M (1994) Glucose and urea production and leucine, ketoisocaproate and alanine fluxes at supraphysiological plasma adrenaline concentrations in volunteers. Intensive Care Med 20:113–118

    CAS  PubMed  Google Scholar 

  10. Miles JM, Nissen SL, Haymond MW (1984) Effects of epinephrine infusion on leucine and alanine kinetics in humans. Am J Physiol 247:E166-E172

    CAS  PubMed  Google Scholar 

  11. Boyd O, Grounds RM, Bennett ED (1993) A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 270:2699–2707

    CAS  PubMed  Google Scholar 

  12. Takala J, Meier-Hellmann A, Eddlestone J, Hulstaert P, Sramek V (2000) Effect of dopexamine on outcome after major abdominal surgery: a prospective, randomized, controlled multicenter study. European Multicenter Study Group on Dopexamine in Major Abdominal Surgery. Crit Care Med 28:3417–3423

    CAS  PubMed  Google Scholar 

  13. Tighe D, Moss R, Haywood G, Webb A, al-Saady N, Heath F, Bennett D (1993) Dopexamine hydrochloride maintains portal blood flow and attenuates hepatic ultrastructural changes in a porcine peritonitis model of multiple system organ failure. Circ Shock 39:199–206

    CAS  PubMed  Google Scholar 

  14. Tighe D, Moss R, Heywood G, al-Saady N, Webb A, Bennett D (1995) Goal-directed therapy with dopexamine, dobutamine and volume expansion: effects of systemic oxygen transport on hepatic ultrastructure in porcine sepsis. Crit Care Med 23:1997–2007

    CAS  PubMed  Google Scholar 

  15. Meier-Hellmann A, Reinhart K, Bredle DL, Specht M, Spies C, Hannemann L (1997) Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med 25:399–404

    CAS  PubMed  Google Scholar 

  16. Geisser W, Träger K, Hähn A, Georgieff M, Ensinger H (1997) Metabolic and calorigenic effects of dopexamine in healthy volunteers. Crit Care Med 25:1332–1337

    Article  CAS  PubMed  Google Scholar 

  17. Meier-Hellmann A, Bredle DL, Specht M, Hannemann L, Reinhart K (1999) Dopexamine increases splanchnic blood flow but decreases gastric mucosal pH in severe septic patients treated with dobutamine. Crit Care Med 27:2166–2171

    CAS  PubMed  Google Scholar 

  18. Takala J, Keinanen O, Vaisanen P, Aarno K (1989) Measurement of gas exchange in intensive care: laboratory and clinical validation of a new device. Crit Care Med 17:1041–1047

    CAS  PubMed  Google Scholar 

  19. Wolfe RR (1992) Appendix A: laboratory methods. In: Wolfe RR (ed) Radioactive and stable isotope tracers in biomedicine. Wiley-Liss, New York, pp 417–438

  20. Magni F, Arnoldi L, Galati G, Galli-Kienle M (1994) Simultaneous determination of plasma levels of a-ketoisocaproic acid and leucine and evaluation of a-[1-13C]ketoisocaproic acid and [1-13C]leucine enrichment by gas chromatography-mass spectrometry. Anal Biochem 220:308–314

    Article  CAS  PubMed  Google Scholar 

  21. Patterson BW, Carraro F, Wolfe RR (1993) Measurement of15N-enrichment in multiple amino acids and urea in a single analysis by gas chromatography/mass spectrometry. Biol Mass Spectrometry 22:518–523

    CAS  Google Scholar 

  22. Wolfe RR (1992) Calculation of substrate kinetics: single-pool model. In: Wolfe RR (ed) Radioactive and stable isotope tracers in biomedicine: principles and practice of kinetic analysis. Wiley-Liss, New York, pp 119–144

  23. Dirks B, Vorwalter C, Grünert A, Ahnefeld FW (1988) Basal plasma catecholamine level, determination using HPLC-ED and different sample cleanup techniques. Chromatographia 25:223–229

    CAS  Google Scholar 

  24. Ensinger H, Weichel T, Lindner KH, Grünert A, Ahnefeld FW (1993) Effects of norepinephrine, epinephrine and dopamine infusions on oxygen consumption in volunteers. Crit Care Med 21:1502–1508

    CAS  PubMed  Google Scholar 

  25. Erb JM, Ensinger H, Gaissmaier S, Weichel T, Schricker T, Georgieff M (1995) Oxygen uptake and metabolic changes during infusion of dobutamine in comparison to fenoterol and phenylephrine in volunteers. Clin Intensive Care 6:159–165

    Google Scholar 

  26. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65–70

    Google Scholar 

  27. Kiefer P, Tugtekin I, Wiedeck H, Vogt J, Wachter U, Bracht H, Geldner G, Georgieff M, Radermacher P (2001) Effect of dopexamine on hepatic metabolic activity in patients with septic shock. Shock 15:427–431

    CAS  PubMed  Google Scholar 

  28. Reinelt H, Radermacher P, Kiefer P, Fischer G, Wachter U, Vogt J, Georgieff M (1999) Impact of exogenous β-adrenergic receptor stimulation on hepatosplanchnic oxygen kinetics and metabolic activity in septic shock. Crit Care Med 27:325–331

    CAS  PubMed  Google Scholar 

  29. Foulds RA (1988) Clinical development of dopexamine hydrochloride (Dopacard) and an overview of its hemodynamic effects. Am J Cardiol 62:41C–45C

    CAS  PubMed  Google Scholar 

  30. Smith GW, Hall JC, Farmer JB, Simpson WT (1987) The cardiovascular actions of dopexamine hydrochloride, an agonist at dopamine receptors and β2-adrenoceptors in the dog. J Pharm Pharmacol 39:636–641

    CAS  PubMed  Google Scholar 

  31. Olsen NV, Lund J, Jensen PF, Espersen K, Kanstrup IL, Plum I, Leyssac PP (1993) Dopamine, dobutamine and dopexamine. A comparison of renal effects in unanesthetized human volunteers. Anesthesiology 79:685–694

    CAS  PubMed  Google Scholar 

  32. Wolff F, Carstens V, Fischer JH, Behrenbeck D, Bolte A (1986) Cardiopulmonary effects of betamimetic tocolytic and glucocorticoid therapy in pregnant women. Arch Gynecol 239:49–58

    CAS  PubMed  Google Scholar 

  33. Steele R (1959) Influences on glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 82:420–430

    CAS  PubMed  Google Scholar 

  34. Mitchell PD, Smith GW, Wells E, West PA (1987) Inhibition of uptake1 by dopexamine hydrochloride in vitro. Br J Pharmacol 92:265–270

    CAS  PubMed  Google Scholar 

  35. Ensinger H, Stein B, Jäger O, Grünert A, Ahnefeld FW (1992) Relationship between infusion rates, plasma concentrations and cardiovascular and metabolic effects during the infusion of norepinephrine in healthy volunteers. Crit Care Med 20:1250–1256

    CAS  PubMed  Google Scholar 

  36. Kopin IJ, Zukowska-Grojec Z, Bayorh MA, Goldstein DS (1984) Estimation of intrasynaptic norepinephrine concentrations at vascular neuroeffector junctions in vivo. Naunyn Schmiedebergs Arch Pharmacol 325:298–305

    CAS  PubMed  Google Scholar 

  37. Ensinger H, Weichel T, Lindner KH, Prengel A, Grünert A, Ahnefeld FW (1992) Relationship between arterial and peripheral venous catecholamine plasma catecholamine concentrations during infusion of noradrenaline and adrenaline in healthy volunteers. Eur J Clin Pharmacol 43:245–249

    CAS  PubMed  Google Scholar 

  38. Brown MJ, Brown DC, Murphy MB (1983) Hypokalemia from beta2-receptor stimulation by circulating epinephrine. N Engl J Med 309:1414–1419

    CAS  PubMed  Google Scholar 

  39. Tappy L, Cayeux M-C, Schneiter P, Schindler C, Temler E, Jéquier E, Chiolero R (1995) Effects of lactate on glucose metabolism in healthy subjects and in severely injured hyperglycemic patients. Am J Physiol 268:E630–E635

    CAS  PubMed  Google Scholar 

  40. Ensinger H, Weichel T, Lindner KH, Grünert A, Georgieff M (1995) Are the effects of noradrenaline, adrenaline and dopamine infusions on VO2 and metabolism transient? Intensive Care Med 21:50–56

    CAS  PubMed  Google Scholar 

  41. Navegantes LC, Resano NMZ, Migliorini RH, Kettelhut IC (2000) Role of adrenoceptors and cAMP on the catecholamine-induced inhibition of proteolysis in rat skeletal muscle. Am J Physiol Endocrinol Metab 279:E663-E668

    Google Scholar 

  42. Jungas RL, Halperin ML, Brosnan JT (1992) Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev 72:419–448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Geisser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geisser, W., Vogt, J., Wachter, U. et al. Effects of dopexamine in comparison with fenoterol on carbohydrate, fat and protein metabolism in healthy volunteers. Intensive Care Med 30, 702–708 (2004). https://doi.org/10.1007/s00134-003-2124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-003-2124-1

Keywords

Navigation