Skip to main content

Advertisement

Log in

Knochenzement als lokaler Antibiotikaträger

Bone cement as a local antibiotic carrier

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Es besteht weitgehend Konsens darüber, dass der adjuvante lokale Einsatz von antimikrobiellen Wirkstoffen in Kombination mit ihrer systemischen Verabreichung implantatassoziierte muskuloskelettale Infektionen besser bekämpfen kann. Der Vorteil der lokalen Antibiotika liegt in ihrer besonderen Pharmakokinetik mit initial hohen Antibiotikakonzentrationen am Implantationsort bei nur geringer systemischer Aufnahme.

Behandlungsziel

Ziel der lokalen Anwendung ist der Schutz des körperfremden Materials direkt am Implantationsort vor Keimbesiedelung und Biofilmbildung (Prophylaxe) sowie die Unterstützung der Sanierung einer Infektion nach chirurgischem Debridement (Behandlung). Knochenzement ist dabei seit den Beobachtungen von Prof. Buchholz der am häufigsten verwendete lokale Wirkstoffträger.

Anwendung

In Infektfällen bestimmen dabei im Idealfall Chirurgen gemeinsam mit Mikrobiologen, Infektiologen oder klinischen Pharmazeuten auf der Basis des Keimnachweises und Antibiogramms, welche antiinfektiven Wirkstoffe systemisch und welche mit PMMA-Zement lokal für den Patienten indiziert sind. Allerdings besteht für die mit dem Knochenzement verabreichten Antiinfektiva nach wie vor Unsicherheit darüber, welche Wirkstoffe in welchen Konzentrationen diesem Trägermaterial zugemischt werden können. Entsprechend fassen die Autoren dieses Übersichtsartikels nicht nur die Rationale und die Evidenz des lokalen Antibiotikaeinsatzes zusammen, sondern führen auch aus, welche Punkte für die Zumischung dieser Wirkstoffe zum Zement beachtet werden müssen.

Abstract

Background

There is widespread consensus that adjuvant local use of antimicrobial agents in combination with their systemic administration can better prevent and treat implant-associated musculoskeletal infections. The advantage of local antibiotics lies in their particular pharmacokinetics with initially high antibiotic concentrations at the implant site with only low systemic uptake.

Aim of treatment

The aim of local application is to protect the foreign bodies directly at the implantation site from bacterial colonization and biofilm formation (prophylaxis) and to support the eradication of an already established infection after surgical debridement (treatment). Since the observations of Prof. Buchholz, bone cement has been the most frequently used local carrier system.

Application

In cases of infection, surgeons should ideally work together with microbiologists, infectiologists or clinical pharmacists to determine which anti-infective agents are indicated systemically for the patient and which ones are indicated locally with PMMA cement, based on the pathogen(s) and antibiograms. However, for the anti-infective agents administered with bone cement, there is still uncertainty about which agents can be added to this carrier material and at what concentrations. Accordingly, the authors of this review article not only summarize the rationale and evidence for local antibiotic use but also elaborate on the points that must be considered for admixing these agents to the cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Abbreviations

eGFR:

Geschätzte glomeruläre Filtrationsrate

IE :

Internationale Einheiten

ISO :

Internationale Organisation für Normung

MHK :

Minimale Hemmkonzentration

MRSA :

Methicillin-resistenter Staphylococcus aureus

MRSE :

Methicillin-resistenter Staphylococcus epidermidis

PMMA :

Polymethylmethacrylat

PPI :

Periprothetischer Infekt

Literatur

  1. Walter N, Rupp M, Hinterberger T, Alt V (2021) Protheseninfektionen und die zunehmende Bedeutung psychologischer Komorbiditäten : Eine epidemiologische Analyse für Deutschland von 2009 bis 2019. Orthopade 50(10):859–865. https://doi.org/10.1007/s00132-021-04088-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J (2012) Economic burden of periprosthetic joint infection in the United States. J Arthroplasty 27(8):61–65.e1. https://doi.org/10.1016/j.arth.2012.02.022

    Article  PubMed  Google Scholar 

  3. Banke IJ, von Eisenhart-Rothe R, Mühlhofer HM (2015) Epidemiologie und Prophylaxe periprothetischer Infektionen. Orthopade 44(12):928–930–3. https://doi.org/10.1007/s00132-015-3187-8

    Article  CAS  PubMed  Google Scholar 

  4. Rupp M, Lau E, Kurtz SM, Alt V (2020) Projections of primary TKA and THA in Germany from 2016 through 2040. Clin Orthop Relat Res 478(7):1622–1633. https://doi.org/10.1097/CORR.0000000000001214

    Article  PubMed  PubMed Central  Google Scholar 

  5. Trampuz A, Zimmerli W (2006) Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 37(2):S59–66. https://doi.org/10.1016/j.injury.2006.04.010

    Article  PubMed  Google Scholar 

  6. Metsemakers WJ, Onsea J, Neutjens E, Steffens E, Schuermans A, McNally M, Nijs S (2017) Prevention of fracture-related infection: a multidisciplinary care package. Int Orthop 41(12):2457–2469. https://doi.org/10.1007/s00264-017-3607-y

    Article  PubMed  Google Scholar 

  7. Parvizi J, Gehrke T, Chen AF (2013) Proceedings of the international consensus on periprosthetic joint infection. Bone Joint J 95(11):1450–1452. https://doi.org/10.1302/0301-620X.95B11.33135

    Article  PubMed  Google Scholar 

  8. Parvizi J, Gehrke T (2018) Proceedings of the second international consensus meeting on musculoskeletal infection; hip and knee section. Data Trace Publishing Company, Brooklandville

    Google Scholar 

  9. Rimke C, Enz A, Bail HJ et al (2020) Evaluation of the standard procedure for the treatment of periprosthetic joint infections (PJI) in Germany—results of a survey within the EndoCert initiative. BMC Musculoskelet Disord 21:694. https://doi.org/10.1186/s12891-020-03670-y

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kühn KD, Renz N, Trampuz A (2017) Lokale Antibiotikatherapie. Unfallchirurg 120(7):561–572. https://doi.org/10.1007/s00113-017-0372-8

    Article  PubMed  Google Scholar 

  11. Frommelt (2004) Lokale Antibiotikatherapie. In: Schnettler, Steinau (Hrsg) Septische Knochenchirurgie. Thieme, S 82–90

    Google Scholar 

  12. Buchholz HW, Engelbrecht H (1970) Über die Depotwirkung einiger Antibiotica bei Vermischung mit dem Kunstharz Palacos. Chirurg 41(11):511–515

    CAS  PubMed  Google Scholar 

  13. Klemm KW (1993) Antibiotic bead chains. Clin Orthop Relat Res 295:63–76

    Article  Google Scholar 

  14. Ostermann PA, Seligson D, Henry SL (1995) Local antibiotic therapy for severe open fractures. A review of 1085 consecutive cases. J Bone Joint Surg Br 77(1):93–97

    Article  CAS  PubMed  Google Scholar 

  15. Sliepen J, Corrigan RA, Dudareva M, Wouthuyzen-Bakker M, Rentenaar RJ, Atkins BL, Govaert GAM, McNally MA, IJpma FFA (2022) Does the use of local antibiotics affect clinical outcome of patients with fracture-related infection? Antibiotics 11(10):1330. https://doi.org/10.3390/antibiotics11101330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McNally MA, Ferguson JY, Scarborough M, Ramsden A, Stubbs DA, Atkins BL (2022) Mid- to long-term results of single-stage surgery for patients with chronic osteomyelitis using a bioabsorbable gentamicin-loaded ceramic carrier. Bone Joint J 104(9):1095–1100. https://doi.org/10.1302/0301-620X.104B9.BJJ-2022-0396.R1

    Article  PubMed  Google Scholar 

  17. Engesaeter LB, Lie SA, Espehaug B, Furnes O, Vollset SE, Havelin LI (2003) Antibiotic prophylaxis in total hip arthroplasty: effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0–14 years in the Norwegian arthroplasty register. Acta Orthop Scand 74(6):644–651. https://doi.org/10.1080/00016470310018135

    Article  PubMed  Google Scholar 

  18. Jämsen E, Huhtala H, Puolakka T, Moilanen T (2009) Risk factors for infection after knee arthroplasty. A register-based analysis of 43,149 cases. J Bone Joint Surg Am 91(1):38–47. https://doi.org/10.2106/JBJS.G.01686

    Article  PubMed  Google Scholar 

  19. Jameson SS, Asaad A, Diament M, Kasim A, Bigirumurame T, Baker P, Mason J, Partington P, Reed M (2019) Antibiotic-loaded bone cement is associated with a lower risk of revision following primary cemented total knee arthroplasty: an analysis of 731,214 cases using national joint registry data. Bone Joint J 101(11):1331–1347. https://doi.org/10.1302/0301-620X.101B11.BJJ-2019-0196.R1

    Article  PubMed  Google Scholar 

  20. Leong JW, Cook MJ, O’Neill TW, Board TN (2020) Is the use of antibiotic-loaded bone cement associated with a lower risk of revision after primary total hip arthroplasty? Bone Joint J 102(8):997–1002. https://doi.org/10.1302/0301-620X.102B8.BJJ-2020-0120.R1

    Article  PubMed  Google Scholar 

  21. Namba RS, Chen Y, Paxton EW, Slipchenko T, Fithian DC (2009) Outcomes of routine use of antibiotic-loaded cement in primary total knee arthroplasty. J Arthroplasty 24(6):44–47. https://doi.org/10.1016/j.arth.2009.05.007

    Article  PubMed  Google Scholar 

  22. Zhou Y, Li L, Zhou Q, Yuan S, Wu Y, Zhao H, Wu H (2015) Lack of efficacy of prophylactic application of antibiotic-loaded bone cement for prevention of infection in primary total knee arthroplasty: results of a meta-analysis. Surg Infect 16(2):183–187. https://doi.org/10.1089/sur.2014.044

    Article  Google Scholar 

  23. King JD, Hamilton DH, Jacobs CA, Duncan ST (2018) The hidden cost of commercial antibiotic-loaded bone cement: a systematic review of clinical results and cost implications following total knee arthroplasty. J Arthroplasty 33(12):3789–3792. https://doi.org/10.1016/j.arth.2018.08.009

    Article  PubMed  Google Scholar 

  24. Bingham J (2022) When and how should I use antibiotic cement in primary and revision joint arthroplasty? J Arthroplasty 37(8):1435–1437. https://doi.org/10.1016/j.arth.2022.02.001

    Article  PubMed  Google Scholar 

  25. Kühn KD (2014) PMMA cements. Are we aware what we are using? Springer, Berlin, Heidelberg https://doi.org/10.1007/978-3-642-41536-4.ISBN

    Book  Google Scholar 

  26. Ensing GT, van Horn JR, van der Mei HC, Busscher HJ, Neut D (2008) Copal bone cement is more effective in preventing biofilm formation than Palacos R‑G. Clin Orthop Relat Res 466(6):1492–1498. https://doi.org/10.1007/s11999-008-0203-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cara A, Ballet M, Hemery C, Ferry T, Laurent F, Josse J (2021) Antibiotics in bone cements used for prosthesis fixation: an efficient way to prevent staphylococcus aureus and staphylococcus epidermidis prosthetic joint infection. Front Med 20(7):576231. https://doi.org/10.3389/fmed.2020.576231

    Article  Google Scholar 

  28. Berberich C, Josse J, Ruiz PS (2022) Patients at a high risk of PJI: can we reduce the incidence of infection using dual antibiotic-loaded bone cement? Arthroplasty 4(1):41. https://doi.org/10.1186/s42836-022-00142-7

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dudareva M, Kümin M, Vach W, Kaier K, Ferguson J, McNally M, Scarborough M (2019) Short or long antibiotic regimes in orthopaedics (SOLARIO): a randomised controlled open-label non-inferiority trial of duration of systemic antibiotics in adults with orthopaedic infection treated operatively with local antibiotic therapy. Trials 20(1):693. https://doi.org/10.1186/s13063-019-3832-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coraça-Huber DC, Ammann CG, Nogler M, Fille M, Frommelt L, Kühn KD, Fölsch C (2016) Lyophilized allogeneic bone tissue as an antibiotic carrier. Cell Tissue Bank 17(4):629–642. https://doi.org/10.1007/s10561-016-9582-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Winkler H, Janata O, Berger C, Wein W, Georgopoulos A (2000) In vitro release of vancomycin and tobramycin from impregnated human and bovine bone grafts. J Antimicrob Chemother 46(3):423–428. https://doi.org/10.1093/jac/46.3.423

    Article  CAS  PubMed  Google Scholar 

  32. Shan S, Tu L, Gu W, Aikenmu K, Zhao J (2020) A meta-analysis of the local application of vancomycin powder to prevent surgical site infection after spinal surgeries. J Int Med Res 48(7):300060520920057. https://doi.org/10.1177/0300060520920057

    Article  PubMed  Google Scholar 

  33. Braun J, Eckes S, Rommens PM, Schmitz K, Nickel D, Ritz U (2020) Toxic effect of vancomycin on viability and functionality of different cells involved in tissue regeneration. Antibiotics 9(5):238. https://doi.org/10.3390/antibiotics9050238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Coraça-Huber DC, Wurm A, Fille M, Hausdorfer J, Nogler M, Vogt S, Kühn KD (2015) Antibiotic-loaded calcium carbonate/calcium sulfate granules as co-adjuvant for bone grafting. J Mater Sci Mater Med 26(1):5344. https://doi.org/10.1007/s10856-014-5344-8

    Article  CAS  PubMed  Google Scholar 

  35. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25(10):2445–2461. https://doi.org/10.1007/s10856-014-5240-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shi X, Wu Y, Ni H, Li M, Zhang C, Qi B, Wei M, Wang T, Xu Y (2022) Antibiotic-loaded calcium sulfate in clinical treatment of chronic osteomyelitis: a systematic review and meta-analysis. J Orthop Surg Res 17(1):104. https://doi.org/10.1186/s13018-022-02980-2

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bennett-Guerrero E, Pappas TN, Koltun WA, Fleshman JW, Lin M, Garg J, Mark DB, Marcet JE, Remzi FH, George VV, Newland K, Corey GR, SWIPE 2 Trial Group (2010) Gentamicin-collagen sponge for infection prophylaxis in colorectal surgery. N Engl J Med 363(11):1038–1049. https://doi.org/10.1056/NEJMoa1000837

    Article  CAS  PubMed  Google Scholar 

  38. Westberg M, Frihagen F, Brun OC, Figved W, Grøgaard B, Valland H, Wangen H, Snorrason F (2015) Effectiveness of gentamicin-containing collagen sponges for prevention of surgical site infection after hip arthroplasty: a multicenter randomized trial. Clin Infect Dis 60(12):1752–1759. https://doi.org/10.1093/cid/civ162

    Article  PubMed  Google Scholar 

  39. McNally MA, Ferguson JY, Lau AC, Diefenbeck M, Scarborough M, Ramsden AJ, Atkins BL (2016) Single-stage treatment of chronic osteomyelitis with a new absorbable, gentamicin-loaded, calcium sulphate/hydroxyapatite biocomposite: a prospective series of 100 cases. Bone Joint J 98(9):1289–1296. https://doi.org/10.1302/0301-620X.98B9.38057

    Article  PubMed  Google Scholar 

  40. Alt V (2017) Antimicrobial coated implants in trauma and orthopaedics—a clinical review and risk-benefit analysis. Injury 48(3):599–607. https://doi.org/10.1016/j.injury.2016.12.011

    Article  PubMed  Google Scholar 

  41. Alt V (2022) Treatment of an infected nonunion with additional fresh fracture of the femur with a silver-coated intramedullary nail: a case report. Trauma Case Rep 39:100641. https://doi.org/10.1016/j.tcr.2022.100641

    Article  PubMed  PubMed Central  Google Scholar 

  42. Romanò CL, Scarponi S, Gallazzi E, Romanò D, Drago L (2015) Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res 10:157. https://doi.org/10.1186/s13018-015-0294-5

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kühn KD, Berberich C, Bösebeck H (2018) Knochenersatzwerkstoffe als lokale Wirkstoffträger: Aktueller Stand bei Ersatzstoffen verschiedenen Ursprungs. Orthopade 47(1):10–23. https://doi.org/10.1007/s00132-017-3505-4

    Article  PubMed  Google Scholar 

  44. Schmid M, Steiner O, Fasshold L, Goessler W, Holl AM, Kühn KD (2020) The stability of carbapenems before and after admixture to PMMA-cement used for replacement surgery caused by Gram-negative bacteria. Eur J Med Res 25(1):34. https://doi.org/10.1186/s40001-020-00428-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gatin L, Mghir AS, Mouton W, Laurent F, Ghout I, Rioux-Leclercq N, Tattevin P, Verdier MC, Cremieux AC (2019) Colistin-containing cement spacer for treatment of experimental carbapenemase-producing Klebsiella pneumoniae prosthetic joint infection. Int J Antimicrob Agents 54(4):456–462. https://doi.org/10.1016/j.ijantimicag.2019.07.009

    Article  CAS  PubMed  Google Scholar 

  46. Wouthuyzen-Bakker M, Kheir MM, Moya I, Rondon AJ, Kheir M, Lozano L, Parvizi J, Soriano A (2019) Failure after 2‑stage exchange arthroplasty for treatment of periprosthetic joint infection: the role of antibiotics in the cement spacer. Clin Infect Dis 68(12):2087–2093. https://doi.org/10.1093/cid/ciy851

    Article  PubMed  Google Scholar 

  47. Carvalho DA, Ribau A, Soares D, Santos AC, Abreu M, Sousa R (2021) Combined antibiotic therapy spacers either commercial or handmade are superior to monotherapy—a microbiological analysis at the second stage of revision. J Bone Jt Infect 6(7):305–312. https://doi.org/10.5194/jbji-6-305-2021

    Article  CAS  Google Scholar 

  48. Wahlig H (1987) Über die Freisetzungskinetik von Antibiotika aus Knochenzementen – Ergebnisse vergleichender Untersuchungen in vitro und in vivo. Aktuelle Probl Chir Orthop 31:221–226

    CAS  PubMed  Google Scholar 

  49. Anagnostakos K, Kelm J (2009) Enhancement of antibiotic elution from acrylic bone cement. J Biomed Mater Res Part B Appl Biomater 90(1):467–475. https://doi.org/10.1002/jbm.b.31281

    Article  CAS  Google Scholar 

  50. Cara A, Ferry T, Laurent F, Josse J (2022) Prophylactic antibiofilm activity of antibiotic-loaded bone cements against gram-negative bacteria. Antibiotics 11(2):137. https://doi.org/10.3390/antibiotics11020137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ochsner PE, Borens O, Bodler PM, Broger I, Eich G, Maurer T, Nötzli H, Trampuz A, Uchay I, Vogt M, Zimmerli W (2013) Infektion des Bewegungsapparates. Herausgegeben durch die Expertengruppe Infektionen des Bewegungsapparates der Schweiz, 1. Aufl. Swiss Orthopaedics, Grandvaux

    Google Scholar 

  52. Sophie H, Yuhan C, Clemens K, Klaus-Dieter K (2021) Properties of orthopaedic cements biomechanically little affected by exceptional use of liquid antibiotics. Orthop Surg 13(7):2153–2162. https://doi.org/10.1111/os.12911

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chang YH, Tai CL, Hsu HY, Hsieh PH, Lee MS, Ueng SW (2014) Liquid antibiotics in bone cement: an effective way to improve the efficiency of antibiotic release in antibiotic loaded bone cement. Bone Joint Res 3(8):246–251. https://doi.org/10.1302/2046-3758.38.2000305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Seldes RM, Winiarsky R, Jordan LC, Baldini T, Brause B, Zodda F, Sculco TP (2005) Liquid gentamicin in bone cement: a laboratory study of a potentially more cost-effective cement spacer. J Bone Joint Surg Am 87(2):268–272. https://doi.org/10.2106/JBJS.C.00728

    Article  PubMed  Google Scholar 

  55. https://pro-implant.org/tools/pocket-guide/1. Zugegriffen: 15.4.2023

  56. Krampitz B, Steiner J, Trampuz A, Kühn KD (2023) Voriconazole admixed with PMMA-impact on mechanical properties and efficacy. Antibiotics 12(5):848. https://doi.org/10.3390/antibiotics12050848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Czuban M, Wulsten D, Wang L, Di Luca M, Trampuz A (2019) Release of different amphotericin B formulations from PMMA bone cements and their activity against Candida biofilm. Colloids Surf B Biointerfaces 183:110406. https://doi.org/10.1016/j.colsurfb.2019.110406

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Berberich.

Ethics declarations

Interessenkonflikt

V. Alt gibt an, dass kein Interessenkonflikt besteht. C. Berberich und K.-D. Kühn sind Mitarbeiter des Unternehmens Heraeus Medical.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien. Die Übersichtsarbeit basiert auf einer ausführlichen Literaturrecherche. Eigene klinische Studien der Autoren wurden an anderer Stelle schon veröffentlicht und sind im Literaturteil benannt.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berberich, C., Kühn, KD. & Alt, V. Knochenzement als lokaler Antibiotikaträger. Orthopädie 52, 981–991 (2023). https://doi.org/10.1007/s00132-023-04447-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-023-04447-6

Schlüsselwörter

Keywords

Navigation