Skip to main content

Advertisement

Log in

Innovative bildbasierte Operationsplanung in der muskuloskelettalen Chirurgie

Innovative image-based planning in musculoskeletal surgery

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Zur Vorbereitung operativer Eingriffe in der Orthopädie und Unfallchirurgie sind die genaue Kenntnis der Bildgebung und die dreidimensionale Vorstellungskraft des Operateurs von herausragender Bedeutung. Eine bildgestützte, präoperative, zweidimensionale Planung ist heutzutage der Goldstandard in der Endoprothetik. Bei besonders komplexen Eingriffen wird darüber hinaus weitere Bildgebung im Sinne einer Computertomographie oder einer Magnetresonanztomographie durchgeführt, wodurch ein dreidimensionales Modell der untersuchten Körperregion generiert wird und dem Operateur bei der Planung der operativen Versorgung helfen kann. Auch erste vierdimensionale, dynamische, computertomographische Untersuchungen sind bereits publiziert worden und stehen ergänzend zur Verfügung.

Digitale Hilfsmittel

Durch digitale Hilfsmittel soll eine verbesserte Darstellung der zu behandelnden Pathologie erreicht und die Vorstellungskraft des Operateurs optimiert werden. Zur Berücksichtigung patientenspezifischer und implantatspezifischer Parameter steht die Finite-Elemente-Methode präoperativ zur Simulation zur Verfügung und kann bei der Operationsplanung berücksichtigt werden. Bei der Operationsdurchführung können relevante Informationen durch Augmented Reality intraoperativ zur Verfügung gestellt werden, ohne den Operationsablauf wesentlich zu beeinflussen.

Abstract

Background

For the preparation of surgical procedures in orthopedics and trauma surgery, precise knowledge of imaging and the three-dimensional imagination of the surgeon are of outstanding importance. Image-based, preoperative two-dimensional planning is the gold standard in arthroplasty today. In complex cases, further imaging such as computed tomography (CT) or magnetic resonance imaging is also performed, generating a three-dimensional model of the body region and helping the surgeon in the planning of the surgical treatment. Four-dimensional, dynamic CT studies have also been reported and are available as a complementary tool.

Digital aids

Furthermore, digital aids should generate an improved representation of the pathology to be treated and optimize the surgeon’s imagination. The finite element method allows patient-specific and implant-specific parameters to be taken into account in preoperative surgical planning. Intraoperatively, relevant information can be provided by augmented reality without significantly influencing the surgical workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

AR:

Augmented Reality

BMI :

Body-Mass-Index

CAD:

Computer Aided Design

FE:

Finite-Elemente

FEM:

Finite-Elemente-Methode

SC :

Sternoclaviculargelenk

VR :

Virtual Reality

Literatur

  1. Vigdorchik JM, Sharma AK, Jerabek SA, Mayman DJ, Sculco PK (2021) Templating for total hip arthroplasty in the modern age. J Am Acad Orthop Surg. https://pubmed.ncbi.nlm.nih.gov/33543909/. Zugegriffen: 7. Okt. 2022

  2. Haddad FS, Masri BA, Garbuz DS, Duncan CP (1999) The prevention of periprosthetic fractures in total hip and knee arthroplasty. Orthop Clin North Am. https://pubmed.ncbi.nlm.nih.gov/10196421/. Zugegriffen: 7. Okt. 2022

  3. Lecerf G, Fessy MH, Philippot R, Massin P, Giraud F, Flecher X et al (2009) Femoral offset: anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg Res 95(3):210–219

    Article  CAS  PubMed  Google Scholar 

  4. Bishi H, Smith JBV, Asopa V, Field RE, Wang C, Sochart DH (2022) Comparison of the accuracy of 2D and 3D templating methods for planning primary total hip replacement: a systematic review and meta-analysis. Efort Open Rev 7(1):70–83

    Article  PubMed  PubMed Central  Google Scholar 

  5. Reinbacher P, Smolle MA, Friesenbichler J, Draschl A, Leithner A, Maurer-Ertl W (2022) Pre-operative templating in THA using a short stem system: precision and accuracy of 2D versus 3D planning method. J Orthop Traumatol 23:16

    Article  PubMed  PubMed Central  Google Scholar 

  6. Origgo JR et al (2020) Greater risks of complications, infections, and revisions in the obese versus non-obese total hip arthroplasty population of 2,190,824 patients: a meta-analysis and systematic review. Osteoarthritis Cartilage. https://pubmed.ncbi.nlm.nih.gov/31705995/. Zugegriffen: 7. Okt. 2022

  7. Della Valle AG, Padgett DE, Salvati EA (2005) Preoperative planning for primary total hip arthroplasty. J Am Acad Orthop Surg 13(7):455–462

    Article  PubMed  Google Scholar 

  8. Kosashvili Y, Shasha N, Olschewski E, Safir O, White L, Gross A et al (2009) Digital versus conventional templating techniques in preoperative planning for total hip arthroplasty. Can J Surg 52(1):6–11

    PubMed  PubMed Central  Google Scholar 

  9. Wong MT, Wiens C, Kuczynski M, Manske S, Schneider PS (2022) Four-dimensional computed tomography: musculoskeletal applications. Can J Surg 65(3):E388–E393

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gondim Teixeira PA, Gervaise A, Louis M, Lecocq S, Raymond A, Aptel S et al (2015) Musculoskeletal wide detector CT: principles, techniques and applications in clinical practice and research. Eur J Radiol 84(5):892–900

    Article  PubMed  Google Scholar 

  11. Kalia V, Obray RW, Filice R, Fayad LM, Murphy K, Carrino JA (2009) Functional joint imaging using 256-MDCT: Technical feasibility. AJR Am J Roentgenol 192(6):W295–299

    Article  PubMed  Google Scholar 

  12. Goh YP, Kamali Moaveni A, Hoy G, Tate J, Rotstein A (2019) Dynamic assessment of sternoclavicular joint instability using four-dimensional computed tomography. J Med Imaging Radiat Oncol 63(2):216–221

    Article  PubMed  Google Scholar 

  13. Wassilew GI, Janz V, Heller MO, Tohtz S, Rogalla P, Hein P et al (2013) Real time visualization of femoroacetabular impingement and subluxation using 320-slice computed tomography. J Orthop Res 31(2):275–281

    Article  PubMed  Google Scholar 

  14. Kakar S, Breighner RE, Leng S, McCollough CH, Moran SL, Berger RA et al (2016) The role of dynamic (4D) CT in the detection of scapholunate ligament injury. J Wrist Surg 5(4):306–310

    Article  PubMed  PubMed Central  Google Scholar 

  15. Antonelli M, Reinke A, Bakas S, Farahani K, Kopp-Schneider A, Landman BA et al (2021) The medical segmentation decathlon. http://arxiv.org/abs/2106.05735https://doi.org/10.1038/s41467-022-30695-9. Zugegriffen: 15.12.2022

  16. Chen H, Zhao N, Tan T, Kang Y, Sun C, Xie G et al (2022) Knee bone and cartilage segmentation based on a 3D deep neural network using adversarial loss for prior shape constraint. Front Med 9. https://doi.org/10.3389/fmed.2022.792900

  17. Hesper T, Bittersohl B, Schleich C, Hosalkar H, Krauspe R, Krekel P et al (2020) Automatic cartilage segmentation for delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: a feasibility study. Cartilage 11(1):32–37

    Article  PubMed  Google Scholar 

  18. Kessler DA, MacKay JW, Crowe VA, Henson FMD, Graves MJ, Gilbert FJ et al (2020) The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs. Comput Med Imaging Graph 86. https://doi.org/10.1016/j.compmedimag.2020.101793

  19. Zeng G, Schmaranzer F, Degonda C, Gerber N, Gerber K, Tannast M et al (2021) MRI-based 3D models of the hip joint enables radiation-free computer-assisted planning of periacetabular osteotomy for treatment of hip dysplasia using deep learning for automatic segmentation. European J Radiol Open 8. https://doi.org/10.1016/j.ejro.2020.100303

  20. Ambellan F, Tack A, Ehlke M, Zachow S (2019) Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative. Med Image Anal 52:109–118

    Article  PubMed  Google Scholar 

  21. Morgan EF, Unnikrisnan GU, Hussein AI (2018) Annual review of biomedical engineering bone mechanical properties in healthy and diseased states https://doi.org/10.1146/annurev-bioeng-062117

    Book  Google Scholar 

  22. Fregly BJ, Besier TF, Lloyd DG, Delp SL, Banks SA, Pandy MG et al (2012) Grand challenge competition to predict in vivo knee loads. J Orthop Res 30(4):503–513

    Article  PubMed  Google Scholar 

  23. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J et al (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871

    Article  CAS  PubMed  Google Scholar 

  24. Oppelt K, Hogan A, Stief F, Grützner PA, Trinler U (2020) Movement analysis in orthopedics and trauma surgery—measurement systems and clinical applications. Z Orthop Unfall 158(3):304–317

    Article  PubMed  Google Scholar 

  25. Fischer MCM, Eschweiler J, Schick F, Asseln M, Damm P, Radermacher K (2018) Patient-specific musculoskeletal modeling of the hip joint for preoperative planning of total hip arthroplasty: A validation study based on in vivo measurements. PLoS ONE 13(4). https://doi.org/10.1371/journal.pone.0195376

  26. Xiong B, Yang P, Lin T, Xu J, Xie Y, Guo Y et al (2022) Changes in hip joint contact stress during a gait cycle based on the individualized modeling method of “gait-musculoskeletal system-finite element”. J Orthop Surg 17(1). https://doi.org/10.1186/s13018-022-03094-5

  27. Ng KCG, Mantovani G, Lamontagne M, Labrosse MR, Beaulé PE (2019) Cam FAI and smaller neck angles increase subchondral bone stresses during squatting: a finite element analysis. In: Clinical orthopaedics and related research. Lippincott Williams and Wilkins, S 1053–1063

    Google Scholar 

  28. Esrafilian A, Stenroth L, Mononen ME, Tanska P, Avela J, Korhonen RK (2020) EMG-assisted muscle force driven finite element model of the knee joint with fibril-reinforced poroelastic cartilages and menisci. Sci Rep 10(1). https://doi.org/10.1038/s41598-020-59602-2

  29. Loi I, Stanev D, Moustakas K (2021) Total knee replacement: subject-specific modeling, finite element analysis, and evaluation of dynamic activities. Front Bioeng Biotechnol 9. https://doi.org/10.3389/fbioe.2021.648356

  30. Benos L, Stanev D, Spyrou L, Moustakas K, Tsaopoulos DE (2020) A review on finite element modeling and simulation of the anterior cruciate ligament reconstruction. Front Bioeng Biotechnol 8:967

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang JY, Qi YS, Bao HRC, Xu YS, Wei BG, Wang YX et al (2021) The effects of different repair methods for a posterior root tear of the lateral meniscus on the biomechanics of the knee: a finite element analysis. J Orthop Surg 16(1). https://doi.org/10.1186/s13018-021-02435-0

  32. Shetty G, Khairkar S (2021) Loading on Attune® fixed-bearing cruciate-substituting total knee implant in knee malalignment during activities of daily living: A finite element analysis. J Orthop 26:36–41

    Article  PubMed  PubMed Central  Google Scholar 

  33. Joukar A, Chande RD, Carpenter RD, Lindsey DP, Erbulut DU, Yerby SA et al (2019) Effects on hip stress following sacroiliac joint fixation: A finite element study. JOR Spine 2(4). https://doi.org/10.1002/jsp2.1067

  34. Tran TN, Wolf M, Winter P, Landgraeber S (2022) Hip joint mechanics in patients with osteonecrosis of the femoral head following treatment by advanced core decompression. Clin Biomech 94. https://doi.org/10.1016/j.clinbiomech.2022.105635

  35. Calka M, Perrier P, Ohayon J, Grivot-Boichon C, Rochette M, Payan Y (2021) Machine-Learning based model order reduction of a biomechanical model of the human tongue. Comput Methods Programs Biomed 198:105786

    Article  PubMed  Google Scholar 

  36. Lauzeral N, Borzacchiello D, Kugler M, George D, Rémond Y, Hostettler A et al (2019) A model order reduction approach to create patient-specific mechanical models of human liver in computational medicine applications. Comput Methods Programs Biomed 170:95–106

    Article  PubMed  Google Scholar 

  37. Verhey JT, Haglin JM, Verhey EM, Hartigan DE (2020) Virtual, augmented, and mixed reality applications in orthopedic surgery. Int J Med Robot 16(2):e2067

    Article  PubMed  Google Scholar 

  38. Auvinet E, Maillot C, Uzoho C (2020) Augmented reality technology for joint replacement. In: Rivière C, Vendittoli PA (Hrsg) Personalized hip and knee joint replacement. Springer, Cham

    Google Scholar 

  39. Tsukada S, Ogawa H, Nishino M, Kurosaka K, Hirasawa N (2021) Augmented reality-assisted femoral Bone resection in total knee arthroplasty. JBJS Open Access 6(3):e21.00001

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tsukada S, Ogawa H, Kurosaka K, Saito M, Nishino M, Hirasawa N (2022) Augmented reality-aided unicompartmental knee arthroplasty. J Exp Orthop 9:88

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tu P, Gao Y, Lungu AJ, Li D, Wang H, Chen X (2021) Augmented reality based navigation for distal interlocking of intramedullary nails utilizing Microsoft HoloLens 2. Comput Biol Med 133:104402

    Article  PubMed  Google Scholar 

  42. Viehöfer AF, Wirth SH, Zimmermann SM, Jaberg L, Dennler C, Fürnstahl P et al (2020) Augmented reality guided osteotomy in hallux Valgus correction. BMC Musculoskelet Disord 21:438

    Article  PubMed  PubMed Central  Google Scholar 

  43. Al Abdel S, Chaar MKA, Mustafa A, Al-Hussaini M, Barakat F, Asha W (2020) Innovative surgical planning in resecting soft tissue sarcoma of the foot using augmented reality with a smartphone. J Foot Ankle Surg 59(5):1092–1097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Winter.

Ethics declarations

Interessenkonflikt

P. Winter, S. Rother, P. Orth und E. Fritsch geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winter, P., Rother, S., Orth, P. et al. Innovative bildbasierte Operationsplanung in der muskuloskelettalen Chirurgie. Orthopädie 52, 532–538 (2023). https://doi.org/10.1007/s00132-023-04393-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-023-04393-3

Schlüsselwörter

Keywords

Navigation