Skip to main content

Advertisement

Log in

Digitale Hilfsmittel in der muskuloskelettalen Rehabilitation

Digital tools in musculoskeletal rehabilitation

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Zusammenfassung

Der demografische Wandel mit konsekutiv steigender Anzahl an orthopädischen Eingriffen in Verbindung mit dem wachsenden Fachkräftemangel führte insbesondere in Zeiten der Pandemie zu Versorgungsengpässen der muskuloskelettalen Rehabilitation. Digitale Maßnahmen stellen eine Chance dar, Patienten mit Funktionsstörungen des Bewegungsapparats wieder in den Alltag einzugliedern. Die Änderungen der Gesetzesgrundlage ermöglichen Ärzten und Therapeuten aus Heilmittelberufen, die Rehabilitation ihrer Patienten mit erstattungsfähigen Apps und digitalen Anwendungen zu unterstützen und anschließend das Gelernte dauerhaft in den Alltag der Patienten zu integrieren. Telerehabilitative Systeme, Apps, Telerobotik und Mixed Reality bieten die Möglichkeit, vorhandene Versorgungsstrukturen zu ergänzen und zu optimieren sowie den therapeutischen Hausbesuch mit moderner Technologie neu und zeitgemäß zu gestalten.

Abstract

The demographic transition in combination with the increasing demands of society and a growing shortage of skilled workers are leading to a shortage of care in musculoskeletal rehabilitation, especially in times of the pandemic. Digital interventions represent an opportunity to reintegrate patients with musculoskeletal dysfunctions into everyday life. The changes to the legal basis enable physicians and therapists to support the rehabilitation of their patients with reimbursable apps and digital applications and to permanently integrate learned skills into their daily lives. Telerehabilitation technologies, apps, telerobotics and mixed reality offer the opportunity to complement and optimize existing care structures and to redesign specialized therapeutic home visits with modern technology in a new and contemporary way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Abbreviations

AR:

Augmented Reality

BfArM :

Bundesinstitut für Arzneimittel und Medizinprodukte

DiGA :

Digitale Gesundheitsanwendungen

DVG :

Digitales Versorgungsgesetz

IRENA :

Multimodale Tele-Reha-Nachsorge

KI :

Künstliche Intelligenz

mHealth :

„Mobile health“

MR :

Mixed Reality

PDA :

Tragbare digitale Assistenten

Psy-RENA :

Psychosomatische Reha-Nachsorge

RGB :

Rot, grün, blau

T‑RENA :

Trainingstherapeutische Reha-Nachsorge

VR :

Virtual Reality

Literatur

  1. Pabinger C, Lothaller H, Portner N, Geissler A (2018) Projections of hip arthroplasty in OECD countries up to 2050. HIP Int 28(5):498–506. https://doi.org/10.1177/1120700018757940

    Article  PubMed  Google Scholar 

  2. Schwartz AM, Farley KX, Guild GN, Bradbury TL (2020) Projections and epidemiology of revision hip and knee arthroplasty in the United States to 2030. J Arthroplasty 35(6):S79–S85. https://doi.org/10.1016/j.arth.2020.02.030

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schäfer A, Brokfeld V (2018) Fachkräftemangel in der Rehabilitation am Beispiel der Rehabilitationskliniken in Nordrhein-Westfalen. Rehabilitation 57:343–345. https://doi.org/10.1055/a-0791-2374

    Article  Google Scholar 

  4. Bettger JP, Green CL, Holmes DN et al (2020) Effects of virtual exercise rehabilitation in-home therapy compared with traditional care after total knee arthroplasty: VERITAS, a randomized controlled trial. J Bone Joint Surg Am 102(2):101–109. https://doi.org/10.2106/JBJS.19.00695

    Article  Google Scholar 

  5. World Health Organization Frequently asked questions on Global Task Force on digital health for TB and its work. http://www.who.int/tb/areas-of-work/digital-health/faq/en/ webcite. Zugegriffen: 01.12.2022

  6. Bahadori S, Wainwright TW, Ahmed OH (2020) Readability of information on smartphone apps for total hip replacement and total knee replacement surgery. Patients J Patient Exp 7(3):395. https://doi.org/10.1177/2374373519844266

    Article  PubMed  Google Scholar 

  7. Bahadori S, Wainwright TW, Ahmed OH (2020) Smartphone apps for total hip replacement and total knee replacement surgery patients: a systematic review. Disabil Rehabil. https://doi.org/10.1080/09638288.2018.1514661

    Article  PubMed  Google Scholar 

  8. Crawford DA, Duwelius PJ, Sneller MA et al (2021) Mark Coventry Award: Use of a smartphone-based care platform after primary partial and total knee arthroplasty: a prospective randomized controlled trial. Bone Joint J 103-B(6 Supple A):3–12. https://doi.org/10.1302/0301-620X.103B6.BJJ-2020-2352.R1

    Article  PubMed  Google Scholar 

  9. Tripuraneni KR, Foran JRH, Munson NR, Racca NE, Carothers JT (2021) A smartwatch paired with a mobile application provides postoperative self-directed rehabilitation without compromising total knee arthroplasty outcomes: a randomized controlled trial. J Arthroplasty 36(12):3888–3893. https://doi.org/10.1016/J.ARTH.2021.08.007

    Article  PubMed  Google Scholar 

  10. van Dijk-Huisman HC, Weemaes ATR, Boymans TAEJ, Lenssen AF, de Bie RA (2020) Smartphone app with an accelerometer enhances patients’ physical activity following elective orthopedic surgery: a pilot study. Sensors (Basel) 20(15):1–19. https://doi.org/10.3390/S20154317

    Article  Google Scholar 

  11. Van der Walt N, Salmon LJ, Gooden B et al (2018) Feedback from activity trackers improves daily step count after knee and hip arthroplasty: a randomized controlled trial. J Arthroplasty 33(11):3422–3428. https://doi.org/10.1016/J.ARTH.2018.06.024

    Article  PubMed  Google Scholar 

  12. Pronk Y, Maria Peters MCW, Sheombar A, Brinkman JM (2020) Effectiveness of a mobile eHealth app in guiding patients in pain control and opiate use after total knee replacement: randomized controlled trial. JMIR Mhealth Uhealth 8(3):e16415. https://doi.org/10.2196/16415

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mehta SJ, Hume E, Troxel AB et al (2020) Effect of remote monitoring on discharge to home, return to activity, and rehospitalization after hip and knee arthroplasty: a randomized clinical trial. JAMA Netw Open 3(12):e2028328. https://doi.org/10.1001/JAMANETWORKOPEN.2020.28328

    Article  PubMed  PubMed Central  Google Scholar 

  14. Anthes E (2016) Mental health: There’s an app for that. Nature 532(7597):20–23. https://doi.org/10.1038/532020A

    Article  CAS  PubMed  Google Scholar 

  15. Digitale-Versorgung-Gesetz (DVG). https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl119s2562.pdf. Zugegriffen: 01.12.2022

  16. Tele-Reha-Nachsorgeangebot der Deutschen Rentenversicherung. https://www.deutsche-rentenversicherung.de/DRV/DE/Experten/Infos-fuer-Reha-Einrichtungen/Nachsorge/TeleNachsorge_index.html#:~:text=Tele-Reha-Nachsorge kann nur,und DE-RENA zur Verfügung. Zugegriffen: 01.12.2022

  17. Tanaka Y, Oka H, Nakayama S et al (2017) Improvement of walking ability during postoperative rehabilitation with the hybrid assistive limb after total knee arthroplasty: A randomized controlled study. SAGE Open Med 5:205031211771288. https://doi.org/10.1177/2050312117712888

    Article  Google Scholar 

  18. Yoshikawa K, Mutsuzaki H, Sano A et al (2018) Training with hybrid Assistive limb for walking function after total knee arthroplasty. J Orthop Surg Res. https://doi.org/10.1186/S13018-018-0875-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kotani N, Morishita T, Saita K et al (2020) Feasibility of supplemental robot-assisted knee flexion exercise following total knee arthroplasty. J Back Musculoskelet Rehabil 33(3):413–421. https://doi.org/10.3233/BMR-181482

    Article  PubMed  Google Scholar 

  20. Il YJ, Oh MK, Lee SU, Lee CH (2022) Robot-assisted rehabilitation for total knee or hip replacement surgery patients: A systematic review and meta-analysis. Medicine (Baltimore) 101(40):e30852. https://doi.org/10.1097/MD.0000000000030852

    Article  Google Scholar 

  21. Sousa M, Vieira J, Medeiros D, Arsénio A, Jorge J (2016) SleeveAR: Augmented reality for rehabilitation using realtime feedback. In: Int Conf Intell User Interfaces, Proc IUI. 2016;07-10-March-2016, S 175–185 https://doi.org/10.1145/2856767.2856773

    Chapter  Google Scholar 

  22. Gumaa M, Youssef AR (2019) Is virtual reality effective in orthopedic rehabilitation? A systematic review and meta-analysis. Phys Ther 99(10):1304–1325. https://doi.org/10.1093/PTJ/PZZ093

    Article  PubMed  Google Scholar 

  23. Berton A, Longo UG, Candela V et al (2020) Virtual reality, augmented reality, gamification, and telerehabilitation: Psychological impact on orthopedic patients’ rehabilitation. J Clin Med 9(8):1–13. https://doi.org/10.3390/JCM9082567

    Article  Google Scholar 

  24. Nicolson PJA, Bennell KL, Dobson FL, Van Ginckel A, Holden MA, Hinman RS (2017) Interventions to increase adherence to therapeutic exercise in older adults with low back pain and/or hip/knee osteoarthritis: a systematic review and meta-analysis. Br J Sports Med 51(10):791–799. https://doi.org/10.1136/BJSPORTS-2016-096458

    Article  PubMed  Google Scholar 

  25. Johnson D, Deterding S, Kuhn KA, Staneva A, Stoyanov S, Hides L (2016) Gamification for health and wellbeing: A systematic review of the literature. Internet Interv 6:89. https://doi.org/10.1016/J.INVENT.2016.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mousavi Hondori H, Khademi M (2014) A review on technical and clinical impact of Microsoft Kinect on physical therapy and rehabilitation. J Med Eng 2014:1–16. https://doi.org/10.1155/2014/846514

    Article  Google Scholar 

  27. Lugaresi C, Tang J, Nash H et al (2019) MediaPipe: a framework for building perception pipelines https://doi.org/10.48550/arxiv.1906.08172

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Anton Wolf.

Ethics declarations

Interessenkonflikt

M.A. Wolf, F. Kosmalla und S. Landgraeber geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, M.A., Kosmalla, F. & Landgraeber, S. Digitale Hilfsmittel in der muskuloskelettalen Rehabilitation. Orthopädie 52, 525–531 (2023). https://doi.org/10.1007/s00132-023-04392-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-023-04392-4

Schlüsselwörter

Keywords

Navigation