Skip to main content

Advertisement

Log in

Noninfectious tissue interactions at periprosthetic interfaces

Nichtinfektiöse Gewebsinteraktionen an den periprothetischen Interfaces

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Abstract

The success of hip arthroplasty is based on modern materials in addition to the continuous development of surgical techniques and clinical experience gained over six decades. The biocompatible implant materials used in hip arthroplasty can be textured or coated with biomimetic surfaces to ensure durable component ingrowth and moderate host response. Material integrity plays a critical role in the durability of the stable interface between implant components and periprosthetic tissues. Inflammation at the interfaces due to the release of degradation products from the implant materials is one of the causes of hip arthroplasty failure. This review summarizes the implant materials currently used in hip arthroplasty, their preclinical testing and the postoperative neogenesis of periprosthetic tissues, and the interactions of periprosthetic bone and the implant materials at the periprosthetic interfaces.

Zusammenfassung

Moderne, bioverträgliche Materialien bilden, gepaart mit Erkenntnissen aus sechs Dekaden der klinischen Anwendung und stetigen Weiterentwicklung von Operationstechniken, die Grundlage des Erfolgs der modernen Hüftendoprothetik. Die Implantatmaterialien können mit biomimetischen Oberflächen ausgestattet sein, um ein dauerhaftes Einwachsen der Komponenten bei moderater Gewebereaktion zu gewährleisten. Die Materialintegrität spielt eine entscheidende Rolle für die Dauerhaftigkeit der stabilen Schnittstelle zwischen Implantatkomponente und periprothetischem Gewebe. Entzündungen an der Schnittstelle aufgrund von Materialdegradation können (mit)ursächlich für das Versagen von Hüftendoprothesen sein. Diese Arbeit gibt eine Übersicht über die derzeit in der Hüftendoprothetik verwendeten Implantatmaterialien, deren präklinische Testung und die postoperative Neogenese periprothetischer Gewebe sowie deren Wechselwirkungen mit periprothetischem Knochen und den Implantatmaterialien an der periprothetischen Schnittstelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALTR:

Adverse local tissue reaction

ARMD:

Adverse reactions to metallic debris

CFR:

Carbon fiber-reinforced

CoC:

Ceramic-on-ceramic

CoP:

Ceramic-on-polyethylene

DMN:

Dual modular neck

HA:

Hydroxyapatite

HRA:

Hip resurfacing arthroplasty

HXLPE:

Highly cross-linked polyethylene

LHTHA:

Large head total hip arthroplasty

MARS:

Metal artifact reduction sequence

MDR:

Medical device regulation

MoM:

Metal-on-metal

MoP:

Metal-on-polyethylene

MRI:

Magnetic resonance imaging

MSC:

Mesenchymal stromal cells

PEEK:

Polyetheretherketone

PMMA:

Polymethyl methacrylate

SLIM:

Synovium-like interface membrane

SLM:

Selective laser melting

THA:

Total hip arthroplasty

UHMWPE:

Ultra-high molecular weight polyethylene

References

  1. Čolić K, Grbović A, Sedmak A, Legweel K (2018) Application of numerical methods in design and analysis of orthopedic implant integrity. In: Experimental and numerical investigations in materials science and engineering. Springer, Cham, pp 96–111

    Google Scholar 

  2. Bistolfi A, Giustra F, Bosco F, Sabatini L, Aprato A, Bracco P, Bellare A (2021) Ultra-high molecular weight polyethylene (UHMWPE) for hip and knee arthroplasty: The present and the future. J Orthop 25:98–106

    Article  PubMed  PubMed Central  Google Scholar 

  3. Naghavi SA, Lin C, Sun C, Tamaddon M, Basiouny M, Garcia-Souto P, Taylor S, Hua J, Li D, Wang L (2022) Stress shielding and bone resorption of press-fit polyether–ether–ketone (PEEK) hip prosthesis: a sawbone model study. Polymers 14(21):4600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Belwanshi M, Jayaswal P, Aherwar A (2022) Mechanical behaviour investigation of PEEK coated titanium alloys for hip arthroplasty using finite element analysis. Mater Today Proc 56:2808–2817

    Article  CAS  Google Scholar 

  5. Koh Y‑G, Park K‑M, Lee J‑A, Nam J‑H, Lee H‑Y, Kang K‑T (2019) Total knee arthroplasty application of polyetheretherketone and carbon-fiber-reinforced polyetheretherketone: A review. Mater Sci Eng C Mater Biol Appl 100:70–81

    Article  CAS  PubMed  Google Scholar 

  6. Brockett CL, Carbone S, Fisher J, Jennings LM (2017) PEEK and CFR-PEEK as alternative bearing materials to UHMWPE in a fixed bearing total knee replacement: an experimental wear study. Wear 374:86–91

    Article  PubMed  Google Scholar 

  7. Paulus A, Haßelt S, Jansson V, Giurea A, Neuhaus H, Grupp T, Utzschneider S (2016) Histopathological analysis of PEEK wear particle effects on the synovial tissue of patients. Biomed Res Int. https://doi.org/10.1155/2016/2198914

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ihaddadene R, Affatato S, Zavalloni M, Bouzid S, Viceconti M (2011) Carbon composition effects on wear behaviour and wear mechanisms of metal-on-metal hip prosthesis. Comput Methods Biomech Biomed Engin 14(S1):33–34

    Article  Google Scholar 

  9. Keegan GM, Learmonth ID, Case C (2008) A systematic comparison of the actual, potential, and theoretical health effects of cobalt and chromium exposures from industry and surgical implants. Crit Rev Toxicol 38(8):645–674

    Article  CAS  PubMed  Google Scholar 

  10. Ghosh S, Abanteriba S, Wong S, Houshyar S (2018) Selective laser melted titanium alloys for hip implant applications: Surface modification with new method of polymer grafting. J Mech Behav Biomed Mater 87:312–324

    Article  CAS  PubMed  Google Scholar 

  11. Tang J, Luo J, Huang Y, Sun J, Zhu Z, Xu J, Dargusch M, Yan M (2020) Immunological response triggered by metallic 3D printing powders. Addit Manuf 35:101392

    CAS  Google Scholar 

  12. Kong K, Zhao C, Chang Y, Qiao H, Hu Y, Li H, Zhang J (2022) Use of customized 3D-printed titanium augment with tantalum trabecular cup for large acetabular bone defects in revision total hip arthroplasty: A midterm follow-up study. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.900905

  13. Kurtz SM, Kocagöz S, Arnholt C, Huet R, Ueno M, Walter WL (2014) Advances in zirconia toughened alumina biomaterials for total joint replacement. J Mech Behav Biomed Mater 31:107–116

    Article  CAS  PubMed  Google Scholar 

  14. Carli AV, Patel AR, Cross MB, Mayman DJ, Carroll KM, Pellicci PM, Jerabek SA (2020) Long-term performance of oxidized zirconium on conventional and highly cross-linked polyethylene in total hip arthroplasty. SICOT J 6:10

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sabokbar A, Athanasou NA, Murray DW (2001) Osteolysis induced by radio-opaque agents, bone cements and cementing technique. Springer, Berlin, Heidelberg, pp 149–161

    Book  Google Scholar 

  16. Cooper HJ, Ranawat AS, Potter HG, Foo LF, Jawetz ST, Ranawat CS (2009) Magnetic resonance imaging in the diagnosis and management of hip pain after total hip arthroplasty. J Arthroplasty 24(5):661–667

    Article  PubMed  Google Scholar 

  17. Monopoli MP, Åberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786

    Article  CAS  PubMed  Google Scholar 

  18. Perino G, De Martino I, Zhang L, Xia Z, Gallo J, Natu S, Langton D, Huber M, Rakow A, Schoon J (2021) The contribution of the histopathological examination to the diagnosis of adverse local tissue reactions in arthroplasty. EFORT Open Rev 6(6):399–419

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xia Z, Ricciardi BF, Liu Z, von Ruhland C, Ward M, Lord A, Hughes L, Goldring SR, Purdue E, Murray D (2017) Nano-analyses of wear particles from metal-on-metal and non-metal-on-metal dual modular neck hip arthroplasty. Nanomed Nanotechnol Biol Med 13(3):1205–1217

    Article  CAS  Google Scholar 

  20. Johanson NA, Bullough PG, JR Wilson PD, Salvati EA, Ranawat CS (1987) The microscopic anatomy of the bone-cement interface in failed total hip arthroplasties. Clin Orthop Relat Res 218:123–135

    Article  Google Scholar 

  21. Xue T, Attarilar S, Liu S, Liu J, Song X, Li L, Zhao B, Tang Y (2020) Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: thematic review. Front Bioeng Biotechnol 8:603072

    Article  PubMed  PubMed Central  Google Scholar 

  22. Van Der Straeten C, Calistri A, Grammatopoulos G, De Smet K (2020) Radiographic evaluation of hip resurfacing: the role of x‑rays in the diagnosis of a problematic resurfaced hip. HIP Int 30(2):167–175

    Article  PubMed  Google Scholar 

  23. Krenn V, Perino G (2017) Histological diagnosis of implant-associated pathologies, Histological diagnosis of implant-associated pathologies. Springer, Berlin, Heidelberg, pp 1–44

    Google Scholar 

  24. Salib CG, Lewallen EA, Paradise CR, Tibbo ME, Robin JX, Trousdale WH, Morrey LM, Xiao J, Turner TW, Limberg AK (2019) Molecular pathology of adverse local tissue reaction caused by metal-on-metal implants defined by RNA-seq. Genomics 111(6):1404–1411

    Article  CAS  PubMed  Google Scholar 

  25. Vaculova J, Gallo J, Hurnik P, Motyka O, Goodman SB, Dvorackova J (2018) Low intrapatient variability of histomorphological findings in periprosthetic tissues from revised metal/ceramic on polyethylene joint arthroplasties. J Biomed Mater Res 106(5):2008–2018

    Article  CAS  Google Scholar 

  26. Nich C, Takakubo Y, Pajarinen J, Ainola M, Salem A, Sillat T, Rao AJ, Raska M, Tamaki Y, Takagi M (2013) Macrophages—Key cells in the response to wear debris from joint replacements. J Biomed Mater Res A 101(10):3033–3045

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10(4):487–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46(14):4218–4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumari S, Mg S, Mayor S (2010) Endocytosis unplugged: multiple ways to enter the cell. Cell Res 20(3):256–275

    Article  CAS  PubMed  Google Scholar 

  30. Scharf B, Clement CC, Zolla V, Perino G, Yan B, Elci SG, Purdue E, Goldring S, Macaluso F, Cobelli N (2014) Molecular analysis of chromium and cobalt-related toxicity. Sci Rep 4(1):1–12

    Article  Google Scholar 

  31. Xu H, Guo C, Gao Z, Wang C, Zhang H, Lv C, Yin Z, Wang Y (2018) Micrometer-sized titanium particles induce aseptic loosening in rabbit knee. Biomed Res Int 2018:1–11

    Google Scholar 

  32. Hall DJ, Pourzal R, Jacobs JJ, Urban RM (2019) Metal wear particles in hematopoietic marrow of the axial skeleton in patients with prior revision for mechanical failure of a hip or knee arthroplasty. J Biomed Mater Res B Appl Biomater 107(6):1930–1936

    Article  CAS  PubMed  Google Scholar 

  33. Jain N, Moeller J, Vogel V (2019) Mechanobiology of macrophages: how physical factors coregulate macrophage plasticity and phagocytosis. Annu Rev Biomed Eng 21:267–297

    Article  CAS  PubMed  Google Scholar 

  34. Matthies AK, Skinner JA, Osmani H, Henckel J, Hart AJ (2012) Pseudotumors are common in well-positioned low-wearing metal-on-metal hips. Clin Orthop Relat Res 470(7):1895–1906

    Article  PubMed  Google Scholar 

  35. Van Goethem E, Poincloux R, Gauffre F, Maridonneau-Parini I, Le Cabec V (2010) Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J Immunol 184(2):1049–1061

    Article  CAS  PubMed  Google Scholar 

  36. Galluzzi L, Kepp O, Chan FK‑M, Kroemer G (2017) Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol 12:103

    Article  CAS  PubMed  Google Scholar 

  37. Huber M, Reinisch G, Zenz P, Zweymüller K, Lintner F (2010) Postmortem study of femoral osteolysis associated with metal-on-metal articulation in total hip replacement: an analysis of nine cases. JBJS 92(8):1720–1731

    Article  Google Scholar 

  38. Jiang H, Wang Y, Deng Z, Jin J, Meng J, Chen S, Wang J, Qiu Y, Guo T, Zhao J (2018) Construction and evaluation of a murine calvarial osteolysis model by exposure to cocrmo particles in aseptic loosening. J Vis Exp 13(2):e56276

    Google Scholar 

  39. Koreny T, Tunyogi-Csapó M, Gál I, Vermes C, Jacobs JJ, Glant TT (2006) The role of fibroblasts and fibroblast-derived factors in periprosthetic osteolysis. Arthritis Rheum 54(10):3221–3232

    Article  CAS  PubMed  Google Scholar 

  40. Goodman SB, Gallo J (2019) Periprosthetic osteolysis: mechanisms, prevention and treatment. J Clin Med 8(12):2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T (2005) Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials 26(30):6014–6023

    Article  CAS  PubMed  Google Scholar 

  42. Lakstein D, Kopelovitch W, Barkay Z, Bahaa M, Hendel D, Eliaz N (2009) Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti–6Al–4V implants in rabbits. Acta Biomater 5(6):2258–2269

    Article  CAS  PubMed  Google Scholar 

  43. Huang G, Pan S‑T, Qiu J‑X (2021) The clinical application of porous tantalum and its new development for bone tissue engineering. Materials 14(10):2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kohli N, Stoddart JC, van Arkel RJ (2021) The limit of tolerable micromotion for implant osseointegration: a systematic review. Sci Rep 11(1):1–11

    Article  Google Scholar 

  45. Rakow A, Schoon J, Dienelt A, John T, Textor M, Duda G, Perka C, Schulze F, Ode A (2016) Influence of particulate and dissociated metal-on-metal hip endoprosthesis wear on mesenchymal stromal cells in vivo and in vitro. Biomaterials 98:31–40

    Article  CAS  PubMed  Google Scholar 

  46. Schoon J, Hesse B, Tucoulou R, Geissler S, Ort M, Duda GN, Perka C, Wassilew GI, Perino G, Rakow A (2022) Synchrotron-based characterization of arthroprosthetic CoCrMo particles in human bone marrow. J Mater Sci Mater Med 33(6):54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schoon J, Hesse B, Rakow A, Ort MJ, Lagrange A, Jacobi D, Winter A, Huesker K, Reinke S, Cotte M, Tucoulou R, Marx U, Perka C, Duda GN, Geissler S (2020) Metal-specific biomaterial accumulation in human peri-implant bone and bone marrow. Adv Sci (Weinh) 7(20):2000412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Handorn B (2021) Die Medizinprodukte-Verordnung (EU) 2017/745: Ein Leitfaden für Wirtschaftsakteure zur MDR. Beuth, Berlin

    Google Scholar 

  49. Thangaraju P, Varthya SB (2022) ISO 10993: biological evaluation of medical devices. In: Medical device guidelines and regulations handbook. Springer, Cham, pp 163–187

    Chapter  Google Scholar 

  50. Matharu GS, Pynsent PB, Dunlop DJ (2014) Revision of metal-on-metal hip replacements and resurfacings for adverse reaction to metal debris: a systematic review of outcomes. HIP Int 24(4):311–320

    Article  PubMed  Google Scholar 

  51. Martiniakova M, Grosskopf B, Omelka R, Vondrakova M, Bauerova M (2006) Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci 51(6):1235–1239

    Article  PubMed  Google Scholar 

  52. Trommer RM, Maru MM (2017) Importance of preclinical evaluation of wear in hip implant designs using simulator machines. Rev Bras Ortop 52(3):251–259

    Article  PubMed  Google Scholar 

  53. Czekanska EM, Stoddart MJ, Ralphs JR, Richards RG, Hayes JS (2014) A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. J Biomed Mater Res A 102(8):2636–2643

    Article  CAS  PubMed  Google Scholar 

  54. Schweitzer L, Cunha A, Pereira T, Mika K, Botelho do Rego AM, Ferraria AM, Kieburg H, Geissler S, Uhlmann E, Schoon J (2020) Preclinical in vitro assessment of submicron-scale laser surface texturing on Ti6Al4V. Materials (Basel) 13(23):5342

    Article  CAS  PubMed  Google Scholar 

  55. Andrzejewska A, Catar R, Schoon J, Qazi TH, Sass FA, Jacobi D, Blankenstein A, Reinke S, Kruger D, Streitz M, Schlickeiser S, Richter S, Souidi N, Beez C, Kamhieh-Milz J, Kruger U, Zemojtel T, Jurchott K, Strunk D, Reinke P, Duda G, Moll G, Geissler S (2019) Multi-parameter analysis of biobanked human bone marrow stromal cells shows little influence for donor age and mild comorbidities on phenotypic and functional properties. Front Immunol 10:2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grotenhuis N, Vd Toom HF, Kops N, Bayon Y, Deerenberg EB, Mulder IM, van Osch GJ, Lange JF, Bastiaansen-Jenniskens YM (2014) In vitro model to study the biomaterial-dependent reaction of macrophages in an inflammatory environment. Br J Surg 101(8):983–992

    Article  CAS  PubMed  Google Scholar 

  57. Kodzius R, Schulze F, Gao X, Schneider MR (2017) Organ-on-chip technology: current state and future developments. Genes (Basel) 8(10):266

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Wassilew.

Ethics declarations

Conflict of interest

F. Schulze, G. Perino, A. Rakow, G. Wassilew and J. Schoon declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case. The independent ethics committee of the University Medicine Greifswald granted ethics approval (BB178/20) in accordance with the World Medical Association Declaration of Helsinki.

Additional information

figure qr

Scan QR code & read article online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, F., Perino, G., Rakow, A. et al. Noninfectious tissue interactions at periprosthetic interfaces. Orthopädie 52, 186–195 (2023). https://doi.org/10.1007/s00132-023-04352-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-023-04352-y

Keywords

Schlüsselwörter

Navigation