Skip to main content

Advertisement

Log in

Hypersensitivity and lymphocyte activation after total hip arthroplasty

Hypersensitivität und lymphozytäre Aktivierung nach Hüftendoprothese

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Abstract

In the last decades total hip arthroplasty (THA) has become a standard procedure with many benefits but also a few still unsolved complications, which can lead to surgical revision in 19–23% of cases. Thus, aseptic loosening and metal hypersensitivity remain challenges. The phenomenon of wear debris causes chronic inflammation, which produces osteolysis and aseptic loosening. Wear debris promotes osteoclast production and inhibits osteoblasts by secretion of pro-inflammatory cytokines. Micro-abrasions can be induced by abrasive, adhesive and fatigue wear and cause a liberation of metal ions, which lead to another immune response elicited mostly by macrophages. Another reaction in the neocapsule can be a type IV hypersensitivity reaction to various alloys, containing metals such as nickel, cobalt and chromium. Patch testing and the lymphocyte transformation test (LTT) are not the best diagnostic possibilities to exclude a postoperative hypersensitivity reaction, because of the different alignment of the epicutaneous cells compared to the periprosthetic deep tissue. This hypersensitivity reaction is mostly induced by cytokines, which are secreted by macrophages rather than lymphocytes. In cell cultures and in animal studies, multipotent mesenchymal stem cells (MSC) have been shown to play a role in improving initial implant integration, to limit periprosthetic osteolysis and also to reconstitute peri-implant bone stock during implant revision. Thus, MSC might be used in the future to prolong the durability of THA. A better understanding of the interactions between primary chronic inflammation, corrosion, osteolysis and hypersensitivity is mandatory to develop new therapeutic strategies, aiming at the reduction of the incidence of implant failures. In this article the underlying immunological mechanisms to aseptic loosening are presented.

Zusammenfassung

In den letzten Jahrzehnten wurde die Implantation einer Hüftendoprothese zu einer der erfolgreichsten Operationen. Eine künstliche Hüfte bringt viele Vorteile, aber auch ungelöste Komplikationen mit sich. Sowohl die aseptische Lockerung des Implantats als auch die Hypersensitivität auf metallische Bestandteile bringen Herausforderungen mit sich, wobei 19–23 % aller Patienten Revisionen benötigen. Aus der Prothese freigesetzte Partikel führen zu einer chronischen Entzündung, die eine Osteolyse und darauffolgende Lockerung der Prothese zur Folge haben kann. Außerdem begünstigen die Abriebbestandteile die Osteoklastenproduktion, während die Osteoblasten, durch Freigabe von entzündungsfördernden Zytokinen, gehemmt werden. Der Mikroabrieb kann durch abrasiven, adhäsiven und Ermüdungsverschleiß entstehen, wobei Metallionen freigesetzt werden, die wiederum eine andere Immunantwort erzwingen, welche vor allem durch Makrophagen ausgelöst wird.

Eine weitere Folge des Verschleißes in der Neokapsel ist die Typ-IV-Hypersensitivitätsreaktion gegenüber verschiedensten Metallen wie Nickel, Cobalt und Chrom. Während der Goldstandard der Diagnostik einer Hypersensitivität der epikutane Patchtest ist, kann auch der LTT („lymphocyte transformation test“) verwendet werden, wobei beide Tests nicht die besten Untersuchungsmöglichkeiten bieten, da die epikutanen Zellen anders aufgebaut sind als das periprothetische Gewebe. Diese typische Hypersensitivitätsreaktion wird fast ausschließlich durch Zytokine ausgelöst, welche wiederum eher durch Makrophagen als durch Lymphozyten freigesetzt werden. In neuesten Zellkulturen und Tierversuchen wurden multipotente mesenchymale Stammzellen (MSCs) untersucht. Diese könnten eine wichtige Rolle in der Implantatfixierung spielen, aber auch dabei helfen, dass die Osteolyse inhibiert wird. Außerdem könnte womöglich auch eine erfolgreiche intraoperative Therapie mit MSC den periimplantären Knochenverlust wiederherstellen. Eine Behandlung mit MSC könnte also letztendlich zu einer Verlängerung der Lebensdauer der Hüftendoprothetik führen. Dafür bedarf es aber eines besseren Verständnisses der primären chronischen Entzündung, Korrosion, Osteolyse und Hypersensitivität. Ohne diese könnten keine neuen therapeutischen Strategien entwickelt werden, damit in Zukunft die Inzidenz des Prothesenversagens vermindert werden kann. Dieser Beitrag widmet sich den immunologischen Mechanismen, die zur aseptischen Prothesenlockerung führen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AP‑1:

Activator protein 1

APC:

Antigen-presenting cells

CPI:

Calpain inhibitor I

GM-CSF:

Granulocyte-macrophage colony stimulating factor

IκB:

Inhibitor of κB

IL:

Interleukin

LTT:

Lymphocyte transformation test

MMP:

Matrix metalloproteinase

MSC:

Mesenchymal stem cells

NF-κB:

Nuclear factor kappa B

OPGL:

Osteoprotegerin ligand

PGE2:

Prostaglandin E2

PMMA:

Poly(methyl methacrylate)

PT:

Patch test

RANKL:

Receptor activator of nuclear factor kappa B ligand

TGF-beta:

Transforming growth factor beta

THA:

Total hip arthroplasty

TJA:

Total joint arthroplasty

TNF:

Tumor necrosis factor

TPCK:

N‑tosyl-L-phenylalanine chloromethyl ketone

UHMWPE:

Ultra-high molecular weight polyethylene

References

  1. Gallo J, Kamínek P, Tichá V, Riháková P, Ditmar R (2002) Particle disease. A comprehensive theory of periprosthetic osteolysis: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 146:21–28

    Article  PubMed  Google Scholar 

  2. Anil U, Singh V, Schwarzkopf R (2022) Diagnosis and detection of subtle aseptic loosening in total hip arthroplasty. J Arthroplasty 37:1494–1500

    Article  PubMed  Google Scholar 

  3. Apostu D, Lucaciu O, Berce C, Lucaciu D, Cosma D (2018) Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: a review. J Int Med Res 46:2104–2119

    Article  CAS  PubMed  Google Scholar 

  4. Man K, Jiang L‑H, Foster R, Yang X (2017) Immunological responses to total hip arthroplasty. J Funct Biomater 8:33

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pajarinen J et al (2017) Mesenchymal stem cells in the aseptic loosening of total joint replacements. J Biomed Mater Res 105:1195–1207

    Article  CAS  Google Scholar 

  6. Flecher X et al (2009) Local and systemic activation of the mononuclear phagocyte system in aseptic loosening of total hip arthroplasty. J Clin Immunol 29:681–690

    Article  PubMed  Google Scholar 

  7. Mittal G, Kulshrestha V, Kumar S, Datta B (2020) Epidemiology of revision total hip arthroplasty: an Indian experience. Indian J Orthop 54:608–615

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schwartz AM, Farley KX, Guild GN, Bradbury TL Jr. (2017) Projections and epidemiology of revision hip and knee arthroplasty in the United States to 2030. Physiol Behav 176:139–148

    Google Scholar 

  9. MacDonald SJ (2004) Metal-on-metal total hip arthroplasty: the concerns. Clin Orthop Relat Res 429:86–93

    Article  Google Scholar 

  10. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89:780–785

    Article  PubMed  Google Scholar 

  11. Silbernagl S, Lang F (2019) Color atlas of pathophysiology https://doi.org/10.1055/b-005-148940

    Book  Google Scholar 

  12. Willert H‑G, Semlitsch M (1977) Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 11:157–164

    Article  CAS  PubMed  Google Scholar 

  13. Willert HG et al (2005) Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints: a clinical and histomorphological study. J Bone Joint Surg Am 87:28–36

    Article  PubMed  Google Scholar 

  14. Lohmann CH et al (2013) Periprosthetic tissue metal content but not serum metal content predicts the type of tissue response in failed small-diameter metal-on-metal total hip arthroplasties. J Bone Joint Surg Am 95:1561–1568

    Article  CAS  PubMed  Google Scholar 

  15. Goodman SB (2007) Wear particles, periprosthetic osteolysis and the immune system. Biomaterials 28:5044–5048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Holt G, Murnaghan C, Reilly J, Meek RMD (2007) The biology of aseptic osteolysis. Clin Orthop Relat Res 460:240–252

    Article  CAS  PubMed  Google Scholar 

  17. Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C (2017) Osteoblast-osteoclast interactions. Connect Tissue Res 176:139–148

    Google Scholar 

  18. Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH (2020) Osteoblast-osteoclast communication and bone homeostasis. Cells 9:1–14

    Article  Google Scholar 

  19. Hattner R, Epker BN, Frost HM (1965) Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature 206:489–490

    Article  CAS  PubMed  Google Scholar 

  20. Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH (2011) Bone remodelling at a glance. J Cell Sci 124:991–998

    Article  CAS  PubMed  Google Scholar 

  21. Maloney WJ, Smith RL (1996) Periprosthetic osteolysis in total hip arthroplasty: the role of particulate wear debris. Instr Course Lect 45:171–182

    CAS  PubMed  Google Scholar 

  22. Antonios JK, Yao Z, Li C, Rao AJ, Goodman SB (2013) Macrophage polarization in response to wear particles in vitro. Cell Mol Immunol 10:471–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xie Y et al (2020) Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen Biomater 7:233–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Özçelik H et al (2015) Harnessing the multifunctionality in nature: a bioactive agent release system with self-antimicrobial and immunomodulatory properties. Adv Healthc Mater 4:2026–2036

    Article  PubMed  Google Scholar 

  25. Kzhyshkowska J et al (2015) Macrophage responses to implants: prospects for personalized medicine. J Leukoc Biol 98:953–962

    Article  CAS  PubMed  Google Scholar 

  26. Clohisy JC, Frazier E, Hirayama T, Abu-Amer Y (2003) RANKL is an essential cytokine mediator of polymethylmethacrylate particle-induced osteoclastogenesis. J Orthop Res 21:202–212

    Article  CAS  PubMed  Google Scholar 

  27. Clohisy JC, Hirayama T, Frazier E, Han SK, Abu-Amer Y (2004) NF-kB signaling blockade abolishes implant particle-induced osteoclastogenesis. J Orthop Res 22:13–20

    Article  CAS  PubMed  Google Scholar 

  28. Utsunomiya T et al (2021) Suppression of NF-κB-induced chronic inflammation mitigates inflammatory osteolysis in the murine continuous polyethylene particle infusion model. J Biomed Mater Res A 109:1828–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simonet WS et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  30. Kong Y‑Y et al (1999) OPGL is a key regulatorof osteoclastogenesis, lymphocyte developmentand lymph-node organogenesis. Nature 397:315–323

    Article  CAS  PubMed  Google Scholar 

  31. Ingham E, Fisher J (2005) The role of macrophages in osteolysis of total joint replacement. Biomaterials 26:1271–1286

    Article  CAS  PubMed  Google Scholar 

  32. Otto M, Kriegsmann J, Gehrke T, Bertz S (2006) Abriebpartikel: Schlüssel der aseptischen Prothesenlockerung? Pathologe 27:447–460

    Article  CAS  PubMed  Google Scholar 

  33. Bauer TW, Schils J (1999) The pathology of total joint arthroplasty. Skelet Radiol 28(8):423–432. https://doi.org/10.1007/s002560050541

    Article  CAS  Google Scholar 

  34. Howie DW et al (2013) Periprosthetic osteolysis after total hip replacement: molecular pathology and clinical management. Inflammopharmacol 21:389–396

    Article  Google Scholar 

  35. Goodman SB, Gibon E, Gallo J, Takagi M (2022) Macrophage polarization and the osteoimmunology of periprosthetic osteolysis. Curr Osteoporos Rep 20:43–52

    Article  PubMed  Google Scholar 

  36. Heisel C, Silva M, Schmalzried TP (2004) Bearing surface options for total hip replacement in young patients. Instr Course Lect 53:49–65

    PubMed  Google Scholar 

  37. Hallab N, Merritt K, Jacobs JJ (2001) Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am 83:428–436

    Article  CAS  PubMed  Google Scholar 

  38. Jacobs JJ, Gilbert JL, Urban RM (1998) Corrosion of metal orthopaedic implants. J Bone Joint Surg Am 80:268–282

    Article  CAS  PubMed  Google Scholar 

  39. Middleton S, Toms A (2016) Allergy in total knee arthroplasty: a review of the facts. Bone Joint J 98B:437–441

    Article  Google Scholar 

  40. Asri RIM et al (2017) Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C Mater Biol Appl 77:1261–1274

    Article  CAS  PubMed  Google Scholar 

  41. Elves MW, Wilson JN, Scales JT, Kemp HBS (1975) Incidence of metal sensitivity in patients with total joint replacements. Br Med J 4:376–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hallab NJ, Jacobs JJ (2009) Biologic effects of implant debris. Bull NYU Hosp Jt Dis 67:182–188

    PubMed  Google Scholar 

  43. Manivasagam G, Dhinasekaran D, Rajamanickam A (2010) Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci 2:40–54

    Article  CAS  Google Scholar 

  44. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425

    Article  CAS  Google Scholar 

  45. Minutti CM, Knipper JA, Allen JE, Zaiss DMW (2017) Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Biol 61:3–11

    Article  CAS  PubMed  Google Scholar 

  46. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100

    Article  CAS  PubMed  Google Scholar 

  47. Bogdanova-Bennett A, Sagi A, Asopa V, Field RE, Sochart DH (2021) Nickel hypersensitivity and skin patch testing in total hip replacement surgery: a systematic review. EFORT Open Rev 6:825–838

    Article  PubMed  PubMed Central  Google Scholar 

  48. Akil S et al (2018) Metal hypersensitivity in total hip and knee arthroplasty: current concepts. J Clin Orthop Trauma 9:3–6

    Article  PubMed  Google Scholar 

  49. Thienpont E (2015) Titanium niobium nitride knee implants are not inferior to chrome cobalt components for primary total knee arthroplasty. Arch Orthop Trauma Surg 135:1749–1754

    Article  PubMed  Google Scholar 

  50. Thyssen JP, Menné T (2010) Metal allergys—a review on exposures, penetration, genetics, prevalence, and clinical implications. Chem Res Toxicol 23:309–318

    Article  CAS  PubMed  Google Scholar 

  51. Lachiewicz PF, Watters TS, Jacobs JJ (2016) Metal hypersensitivity and total knee arthroplasty. J Am Acad Orthop Surg 24:106–112

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lionberger DR, Samorajski J, Wilson CD, Rivera A (2018) What role does metal allergy sensitization play in total knee arthroplasty revision? J Exp Orthop 5(1):30. https://doi.org/10.1186/s40634-018-0146-4

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alobaid MA, Richards SJ, Alexander MR, Gibson MI, Ghaemmaghami AM (2020) Developing immune-regulatory materials using immobilized monosaccharides with immune-instructive properties. Mater Today Bio 8:100080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Innocenti M et al (2017) Metal hypersensitivity after knee arthroplasty: fact or fiction? Acta Biomed 88:78–83

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zondervan RL, Vaux JJ, Blackmer MJ, Brazier BG, Taunt CJ (2019) Improved outcomes in patients with positive metal sensitivity following revision total knee arthroplasty. J Orthop Surg Res 14:1–10

    Article  Google Scholar 

  56. Sasseville D, Alfalah K, Savin E (2021) Patch test results and outcome in patients with complications from total knee arthroplasty: a consecutive case series. J Knee Surg 34:233–241

    Article  PubMed  Google Scholar 

  57. Lohmann CH, Hameister R, Singh G (2017) Allergies in orthopaedic and trauma surgery. Orthop Traumatol Surg Res 103:S75–S81

    Article  CAS  PubMed  Google Scholar 

  58. Thomas P et al (2015) Patients with intolerance reactions to total knee replacement: combined assessment of allergy diagnostics, periprosthetic histology, and peri-implant cytokine expression pattern. Biomed Res Int 2015:910156. https://doi.org/10.1155/2015/910156

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hallab NJ, Caicedo M, Finnegan A, Jacobs JJ (2008) Th1 type lymphocyte reactivity to metals in patients with total hip arthroplasty. J Orthop Surg Res 3:1–11

    Article  Google Scholar 

  60. Münch HJ et al (2015) The association between metal allergy, total knee arthroplasty, and revision. Acta Orthop 86:378–383

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schalock PC et al (2012) Hypersensitivity reactions to metallic implants—diagnostic algorithm and suggested patch test series for clinical use. Contact Derm 66:4–19

    Article  CAS  Google Scholar 

  62. Di Rosa F (2016) Two niches in the bone marrow: a hypothesis on life-long T cell memory. Trends Immunol 37:503–512

    Article  CAS  PubMed  Google Scholar 

  63. Di Rosa F, Pabst R (2005) The bone marrow: a nest for migratory memory T cells. Trends Immunol 26:360–366

    Article  CAS  PubMed  Google Scholar 

  64. Di Rosa F, Gebhardt T (2016) Bone marrow T cells and the integrated functions of recirculating and tissue-resident memory T cells. Front Immunol 7:1–13

    Article  Google Scholar 

  65. Chang HD, Tokoyoda K, Radbruch A (2018) Immunological memories of the bone marrow. Immunol Rev 283:86–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feuerer M et al (2003) Bone marrow as a priming site for T‑cell responses to blood-borne antigen. Nat Med 9:1151–1157

    Article  CAS  PubMed  Google Scholar 

  67. Ort MJ, Geissler S, Rakow A, Schoon J (2019) The allergic bone marrow? The immuno-capacity of the human bone marrow in context of metal-associated hypersensitivity reactions. Front Immunol 10:1–8

    Article  Google Scholar 

  68. Cousen PJ, Gawkrodger DJ (2012) Metal allergy and second-generation metal-on-metal arthroplasties. Contact Derm 66:55–62

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph H. Lohmann MD.

Ethics declarations

Conflict of interest

M.D. Costa, S. Donner, J. Bertrand, O.-L. Pop and C.H. Lohmann declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Additional information

figure qr

Scan QR code & read article online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, M.D., Donner, S., Bertrand, J. et al. Hypersensitivity and lymphocyte activation after total hip arthroplasty. Orthopädie 52, 214–221 (2023). https://doi.org/10.1007/s00132-023-04349-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-023-04349-7

Keywords

Schlüsselwörter

Navigation