Skip to main content

Advertisement

Log in

Abrieberkrankungen und deren Effekte auf das umliegende Gewebe

Particle disease and its effects on periarticular tissue

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Zusammenfassung

Die Abrieberkrankung beschreibt den Effekt des Implantatabriebs auf das umliegende Gewebe und das damit einhergehende Wohlbefinden des Patienten. Sie ist multifaktoriell durch die Art der Gleitpaarung, die Kopfgröße und die Implantatposition bedingt. Dies führt durch die Verursachung von periprothetischen Osteolysen und Weichgewebsreaktionen häufig zur Notwendigkeit einer Revisionsoperation der Hüft-TEP. Die periprothetische Synovialmembran („synovial-like interface membrane“ [SLIM]) spielt bei unsicherer Ursache des Implantatversagens in der Diagnostik eine wesentliche Rolle. Die dezidiertere Analyse der Synovialflüssigkeit und des Knochenmarks verbessert einerseits die Diagnostik, und andererseits das Verständnis für die Ursachen der Revisionsoperation, woraus sich eine Vielzahl von Forschungsansätzen entwickelt hat.

Abstract

Particle disease is the condition caused by wear debris on surrounding tissues and influences the well-being of arthroplasty patients. This condition is multifactorial due to the type of bearing couple, head size and implant position. Subsequent periprosthetic osteolysis and soft tissue reactions, can lead to revision THA surgery. The periprosthetic synovial membrane (synovial-like interface membrane, SLIM) is used in diagnostics when the cause of implant failure is uncertain. Detailed analysis of synovial fluid and bone marrow could improve the diagnostic procedure and strengthen the cases for revision surgery and the underlying biology. A large number of research approaches on this topic have evolved and continue to be utilized in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Abbreviations

ALTR:

Adverse local tissue reaction

CoC :

Keramik/Keramik

CoP :

Keramik/Polyethylen

EFORT :

European Federation of Orthopaedics and Traumatology

HE :

Hämatoxylin-Eosin

HXPE :

Highly cross linked polyethlene

IL :

Interleukin

INF :

Interferon

M‑CSF :

Macrophage-colony stimulating factor

MoM :

Metall/Metall

MoP :

Metall/Polyethylen

PE :

Polyethylen

PMMA :

Polymethylmethacrylat

SLIM :

Synovial-like interface membrane

TEP :

Totalendoprothese

TMT :

Trabecular-Metal-Technologie

TNF :

Tumornekrosefaktor

UHMWPE :

Ultra high molecular weight polyethlene

Literatur

  1. Anonymous Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) (2018) Hip, knee & shoulder arthroplasty (Annual Report)

    Google Scholar 

  2. Anonymous National Joint Registry for England, Wales, Northern Ireland and the Isle of Man (2018) 15th annual report

    Google Scholar 

  3. Berry DJ, Harmsen WS, Cabanela ME et al (2002) Twenty-five-year survivorship of two thousand consecutive primary Charnley total hip replacements: factors affecting survivorship of acetabular and femoral components. J Bone Joint Surg Am 84:171–177

    Article  PubMed  Google Scholar 

  4. Callary SA, Field JR, Campbell DG (2013) Low wear of a second-generation highly crosslinked polyethylene liner: a 5-year radiostereometric analysis study. Clin Orthop Relat Res 471:3596–3600

    Article  PubMed  PubMed Central  Google Scholar 

  5. Campbell P, Ebramzadeh E, Nelson S et al (2010) Histological features of pseudotumor-like tissues from metal-on-metal hips. Clin Orthop Relat Res 468:2321–2327

    Article  PubMed  PubMed Central  Google Scholar 

  6. Davies AP, Willert HG, Campbell PA et al (2005) An unusual lymphocytic perivascular infiltration in tissues around contemporary metal-on-metal joint replacements. J Bone Joint Surg Am 87:18–27

    Article  CAS  PubMed  Google Scholar 

  7. Dean JC, Tisdel CL, Goldberg VM et al (1995) Effects of hydroxyapatite tricalcium phosphate coating and intracancellous placement on bone ingrowth in titanium fibermetal implants. J Arthroplasty 10:830–838

    Article  CAS  PubMed  Google Scholar 

  8. Doorn PF, Campbell PA, Worrall J et al (1998) Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J Biomed Mater Res 42:103–111

    Article  CAS  PubMed  Google Scholar 

  9. Dumbleton JH, Manley MT, Edidin AA (2002) A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplasty 17:649–661

    Article  PubMed  Google Scholar 

  10. Endoprothesenregister (2018) EPRD-Jahresbericht 2016

    Google Scholar 

  11. Engh CA Jr., Stepniewski AS, Ginn SD et al (2006) A randomized prospective evaluation of outcomes after total hip arthroplasty using cross-linked marathon and non-cross-linked Enduron polyethylene liners. J Arthroplasty 21:17–25

    Article  PubMed  Google Scholar 

  12. Gallo J, Goodman SB, Konttinen YT et al (2013) Particle disease: biologic mechanisms of periprosthetic osteolysis in total hip arthroplasty. Innate Immun 19:213–224

    Article  PubMed  Google Scholar 

  13. Goodman SB (2007) Wear particles, periprosthetic osteolysis and the immune system. Biomaterials 28(34):5044–5048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Green TR, Fisher J, Matthews JB et al (2000) Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J Biomed Mater Res 53:490–497

    Article  CAS  PubMed  Google Scholar 

  15. Green TR, Fisher J, Stone M et al (1998) Polyethylene particles of a „critical size“ are necessary for the induction of cytokines by macrophages in vitro. Biomaterials 19:2297–2302

    Article  CAS  PubMed  Google Scholar 

  16. Hallab NJ, Caicedo M, Finnegan A et al (2008) Th1 type lymphocyte reactivity to metals in patients with total hip arthroplasty. J Orthop Surg Res. https://doi.org/10.1186/1749-799X-3-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harris WH (1994) Osteolysis and particle disease in hip replacement. A review. Acta Orthop Scand 65:113–123

    Article  CAS  PubMed  Google Scholar 

  18. Hatton A, Nevelos JE, Matthews JB et al (2003) Effects of clinically relevant alumina ceramic wear particles on TNF-alpha production by human peripheral blood mononuclear phagocytes. Biomaterials 24:1193–1204

    Article  CAS  PubMed  Google Scholar 

  19. Hatton A, Nevelos JE, Nevelos AA et al (2002) Alumina-alumina artificial hip joints. Part I: a histological analysis and characterisation of wear debris by laser capture microdissection of tissues retrieved at revision. Biomaterials 23:3429–3440

    Article  CAS  PubMed  Google Scholar 

  20. Houdek MT, Taunton MJ, Wyles CC et al (2021) Synovial fluid metal Ion levels are superior to blood metal Ion levels in predicting an adverse local tissue reaction in failed total hip arthroplasty. J Arthroplasty 36:3312–3317.e1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ise K, Kawanabe K, Tamura J et al (2009) Clinical results of the wear performance of cross-linked polyethylene in total hip arthroplasty: prospective randomized trial. J Arthroplasty 24:1216–1220

    Article  PubMed  Google Scholar 

  22. Jeffers JR, Walter WL (2012) Ceramic-on-ceramic bearings in hip arthroplasty: state of the art and the future. J Bone Joint Surg Br 94:735–745

    Article  CAS  PubMed  Google Scholar 

  23. Kärrholm JRC, Naucler E, Natam J, Vinblad J, Mohaddes M, Rolfson O (2019) Swedish hip arthroplasty register: annual report 2019

    Google Scholar 

  24. Konttinen YT, Zhao D, Beklen A et al (2005) The microenvironment around total hip replacement prostheses. Clin Orthop Relat Res 430:28–38. https://doi.org/10.1097/01.blo.0000150451.50452.da

    Article  Google Scholar 

  25. Kurtz SM, Gawel HA, Patel JD (2011) History and systematic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin Orthop Relat Res 469:2262–2277

    Article  PubMed  PubMed Central  Google Scholar 

  26. Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370:1508–1519

    Article  PubMed  Google Scholar 

  27. Liewen C, Krenn VT, Dieckmann R et al (2022) Diagnostic value of the CD 15 focus score in two-stage revision arthroplasty of periprosthetic joint infections : high specificity in diagnosing infect eradication. Z Rheumatol 81:342–351

    Article  CAS  PubMed  Google Scholar 

  28. Maloney WJ, Jasty M, Harris WH et al (1990) Endosteal erosion in association with stable uncemented femoral components. J Bone Joint Surg Am 72:1025–1034

    Article  CAS  PubMed  Google Scholar 

  29. Morawietz L, Gehrke T, Classen RA, Barden B, Otto M, Hansen T, Aigner T, Stiehl P, Neidel J, Schröder JH, Frommelt L, Schubert T, Meyer-Scholten C, König A, Ströbel P, Rader ChP, Kirschner S, Lintner F, Rüther W, Skwara A, Bos I, Kriegsmann J, Krenn V (2004) Vorschlag für eine Konsensus-Klassifikation der periprothetischen Membran gelockerter Hüft- und Knieendoprothesen [Proposal for the classification of the periprosthetic membrane from loosened hip and knee endoprostheses]. Pathologe 25(5):375–384. https://doi.org/10.1007/s00292-004-0710-9. German. PMID:15257415

    Article  CAS  PubMed  Google Scholar 

  30. Musib MK, Rasquinha V, Saha S (2011) Identification and characterization of polymeric and metallic wear debris from periprosthetic tissues after total hip revision surgery. J Long Term Eff Med Implants 21:281–290

    Article  CAS  PubMed  Google Scholar 

  31. Neale SD, Sabokbar A, Howie DW et al (1999) Macrophage colony-stimulating factor and interleukin‑6 release by periprosthetic cells stimulates osteoclast formation and bone resorption. J Orthop Res 17:686–694

    Article  CAS  PubMed  Google Scholar 

  32. Needham J, Burns T, Gerlinger T (2008) Catastrophic failure of ceramic-polyethylene bearing total hip arthroplasty. J Arthroplasty 23:627–630

    Article  PubMed  Google Scholar 

  33. Nikolaou VS, Edwards MR, Bogoch E et al (2012) A prospective randomised controlled trial comparing three alternative bearing surfaces in primary total hip replacement. J Bone Joint Surg Br 94:459–465

    Article  CAS  PubMed  Google Scholar 

  34. Older J (2002) Charnley low-friction arthroplasty: a worldwide retrospective review at 15 to 20 years. J Arthroplasty 17:675–680

    Article  PubMed  Google Scholar 

  35. Ong KL, Mowat FS, Chan N et al (2006) Economic burden of revision hip and knee arthroplasty in medicare enrollees. Clin Orthop Relat Res 446:22–28

    Article  CAS  PubMed  Google Scholar 

  36. Ort MJ, Geissler S, Rakow A et al (2019) The allergic bone marrow? The Immuno-capacity of the human bone marrow in context of metal-associated hypersensitivity reactions. Front Immunol 10:2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rakow A, Schoon J, Dienelt A et al (2016) Influence of particulate and dissociated metal-on-metal hip endoprosthesis wear on mesenchymal stromal cells in vivo and in vitro. Biomaterials 98:31–40

    Article  CAS  PubMed  Google Scholar 

  38. Reinke S, Geissler S, Taylor WR et al (2013) Terminally differentiated CD8+ T cells negatively affect bone regeneration in humans. Sci Transl Med 5:177ra136

    Article  Google Scholar 

  39. Schmalzried TP (2012) The painful hip: diagnosis and deliverance. J Bone Joint Surg Br 94:55–57

    Article  CAS  PubMed  Google Scholar 

  40. Schmalzried TP, Jasty M, Harris WH (1992) Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg Am 74:849–863

    Article  CAS  PubMed  Google Scholar 

  41. Scholes SC, Unsworth A (2006) The tribology of metal-on-metal total hip replacements. Proc Inst Mech Eng H 220:183–194

    Article  CAS  PubMed  Google Scholar 

  42. Schoon J, Hesse B, Rakow A et al (2020) Metal-specific biomaterial accumulation in human peri-implant bone and bone marrow. Adv Sci 7:2000412

    Article  CAS  Google Scholar 

  43. Schoon J, Hesse B, Tucoulou R et al (2022) Synchrotron-based characterization of arthroprosthetic CoCrMo particles in human bone marrow. J Mater Sci Mater Med 33:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sorimachi T, Clarke IC, Williams PA et al (2009) Third-body abrasive wear challenge of 32 mm conventional and 44 mm highly crosslinked polyethylene liners in a hip simulator model. Proc Inst Mech Eng H 223:607–623

    Article  CAS  PubMed  Google Scholar 

  45. Stanat SJ, Capozzi JD (2012) Squeaking in third- and fourth-generation ceramic-on-ceramic total hip arthroplasty: meta-analysis and systematic review. J Arthroplasty 27:445–453

    Article  PubMed  Google Scholar 

  46. Thierse H‑J, Gamerdinger K, Junkes C et al (2005) T cell receptor (TCR) interaction with haptens: metal ions as non-classical haptens. Toxicology 209:101–107

    Article  CAS  PubMed  Google Scholar 

  47. Vasconcelos DM, Ribeiro-Da-Silva M, Mateus A et al (2016) Immune response and innervation signatures in aseptic hip implant loosening. J Transl Med 14:205–205

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vollmer J, Weltzien HU, Moulon C (1999) TCR reactivity in human nickel allergy indicates contacts with complementarity-determining region 3 but excludes superantigen-like recognition. J Immunol 163:2723–2731

    Article  CAS  PubMed  Google Scholar 

  49. Walter WL, O’toole GC, Walter WK et al (2007) Squeaking in ceramic-on-ceramic hips: the importance of acetabular component orientation. J Arthroplasty 22:496–503

    Article  PubMed  Google Scholar 

  50. Willmann G (2000) Ceramic femoral head retrieval data. Clin Orthop Relat Res 379:22–28. https://doi.org/10.1097/00003086-200010000-00004

    Article  Google Scholar 

  51. Labek G (2011) Quality of publications regarding the outcome of revision rate after arthtroplasty - final report of the QoLA projekt (EFORT congress)

    Google Scholar 

  52. Sadoghi P, Pawelka W, Liebensteiner MC, Williams A, Leithner A, Labek G (2014) The incidence of implant fractures after total hip arthroplasty. Int Orthop 38(1):39–46

    Article  PubMed  Google Scholar 

  53. Krenn VT, Liebisch M, Dufour M et al (2022) Histopathologische Diagnostik der Arthrofibrose. Unfallchirurgie 125:862–867. https://doi.org/10.1007/s00113-022-01239-z

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Donner.

Ethics declarations

Interessenkonflikt

S. Donner, M.‑J. Ort, V. Krenn und C. Perka geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Diese Studie wurde unterstützt von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Sonderforschungsbereich 1444. Die Mittelgeberin hatte keinen Einfluss auf das Studiendesign, die Datenerhebung und ‐analyse, die Entscheidung zur Veröffentlichung oder die Erstellung des Manuskripts.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donner, S., Perka, C., Krenn, V. et al. Abrieberkrankungen und deren Effekte auf das umliegende Gewebe. Orthopädie 52, 196–205 (2023). https://doi.org/10.1007/s00132-023-04348-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-023-04348-8

Schlüsselwörter

Keywords

Navigation