Skip to main content

Bioactivation of scaffolds in osteonecrosis

Bioaktivierung von Scaffolds bei Osteonekrose


Avascular osteonecrosis (AVN) due to local ischemia leads to an inhomogeneous osseous defect, which can be treated by resection and with bone substitute materials in a joint-preserving treatment. Due to the underlying risk profile of AVN, the mostly subchondral localization and the size of the local bone defect, bone regeneration is impaired. Therefore, bioactivation of the applied bone substitute materials prior to application is highly desirable. Apart from the use of growth factors and other soluble substances, the autologous application of location-typical cells and tissue is a useful alternative to support the bone healing properties of scaffolds. This article presents various methods to activate scaffolds for bone stimulation and discusses these techniques with respect to recent data from the literature.


Knochennekrosen entstehen durch eine ossäre Minderperfusion und führen zu einer inhomogenen ossären Defektzone, die im Fall einer gelenkerhaltenden Therapie entfernt und mit Knochenersatzstoffen behandelt werden kann. Aufgrund des zugrunde liegenden Risikoprofils der AVN,, der meist subchondralen Lokalisation und der Defektgröße wird knöcherne Heilung beeinträchtigt. Daher ist eine Bioaktivierung der verwendeten Knochenersatzmaterialien erstrebenswert. Neben dem Einsatz von Wachstumsfaktoren und anderen löslichen Substanzen stellt die autologe Applikation von lokotypischen Zellen und Geweben eine weitere Möglichkeit dar, die Knochenheilungspotenz von Scaffolds zu erhöhen. In der vorliegenden Arbeit werden die verschiedenen Möglichkeiten der Osteostimulation vorgestellt und diese unter dem Hintergrund der wissenschaftlichen Literatur diskutiert.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Association Research Circulation Osseous classification


Avascular osteonecrosis


Bone morphogenetic proteins

CD40 :

Cluster of differentiation 40


Extracellular matrix


Endoplasmic reticulum


Extracellular vesicles




Instruction for use


Insulin-like growth factor




Human Milk Fat Globule EGF Factor 8




Mesenchymale Stromazelle


3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide




Programmed Cell Death 6 Interacting Protein


Platelet-derived growth factor


Poly(ethylene glycol) maleate citrate






PLGA-methoxy poly(ethylene glycol)




Platelet-rich fibrin


Platelet-rich plasma


Recombinant human BMP


Scanning electron microscope


Tricalcium phosphate


Transforming growth factor


Tumor necrosis factor


Tumor Susceptibility Gene 101


Vascular endothelial growth factor


Xenogeneic antigen-extracted cancellous bone


  1. Ando W, Sakai T, Fukushima W et al (2021) Japanese Orthopaedic Association 2019 Guidelines for osteonecrosis of the femoral head. J Orthop Sci 26:46–68

    Article  Google Scholar 

  2. Andriolo L, Merli G, Tobar C et al (2018) Regenerative therapies increase survivorship of avascular necrosis of the femoral head: a systematic review and meta-analysis. Int Orthop 42:1689–1704

    Article  Google Scholar 

  3. Busch A, Herten M, Haversath M et al (2020) Ceramic scaffolds in a vacuum suction handle for Intraoperative stromal cell enrichment. Int J Mol Sci 21.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen WH, Kong XY, Wan R et al (2012) Effects of huogu I formula (I) on correlated factors of bone regeneration in chickens with steroid-induced necrosis of femoral head. Chin J Integr Med 18:378–384

    CAS  Article  Google Scholar 

  5. Egle K, Salma I, Dubnika A (2021) From blood to regenerative tissue: how autologous platelet-rich fibrin can be combined with other materials to ensure controlled drug and growth factor release. Int J Mol Sci 22(21):11553.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Elgaz S, Bonig H, Bader P (2020) Mesenchymal stromal cells for osteonecrosis. J Transl Med 18:399

    CAS  Article  Google Scholar 

  7. Feddahi N, Herten M, Tassemeier T et al (2021) Does needle design affect the regenerative potential of Bone marrow aspirate? An in vitro study. Life 11.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Han J, Gao F, Li Y et al (2020) The use of platelet-rich plasma for the treatment of osteonecrosis of the femoral head: a systematic review. Biomed Res Int 2020:2642439

    Article  Google Scholar 

  9. Henze K, Herten M, Haversath M et al (2019) Surgical vacuum filter-derived stromal cells are superior in proliferation to human bone marrow aspirate. Stem Cell Res Ther 10:338

    CAS  Article  Google Scholar 

  10. Jager M, Jennissen HP, Haversath M et al (2019) Intrasurgical protein layer on titanium arthroplasty explants: from the big twelve to the implant proteome. Proteomics Clin Appl 13:e1800168

    Article  Google Scholar 

  11. Jäger M, Latosinska A, Herten M et al (2022) The implant proteome—the right surgical glue to fix titanium implants in situ. J Funct Biomater 13(2):44.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Jäger MS, Haversath M, Busch A (2022) Surgical-site released tissue for bone regeneration? The BoneFlo concept. In: 23rd EFORT Lisbon

    Google Scholar 

  13. Kang M, Lee CS, Lee M (2021) Bioactive scaffolds integrated with liposomal or extracellular vesicles for bone regeneration. Bioengineering 88(10):137.

    CAS  Article  Google Scholar 

  14. Landgraeber S, Jäger M (2020) Modified advanced core decompression (mACD). Operat Orthop Traumatol 32:96–106

    Article  Google Scholar 

  15. Li GQ, Wang ZY (2019) MiR-20b promotes osteocyte apoptosis in rats with steroid-induced necrosis of the femoral head through BMP signaling pathway. Eur Rev Med Pharmacol Sci 23:4599–4608

    PubMed  Google Scholar 

  16. Lieberman JR, Conduah A, Urist MR (2004) Treatment of osteonecrosis of the femoral head with core decompression and human bone morphogenetic protein. Clin Orthop Relat Res: 139–145.

    Article  PubMed  Google Scholar 

  17. Martinot P, Dartus J, Leclerc JT et al (2020) Hip survival after plain core decompression alone versus bone morphogenetic protein and/or bone marrow reinjection with core decompression for avascular osteonecrosis of the femoral head: a retrospective case control study in ninety two patients. Int Orthop 44:2275–2282

    Article  Google Scholar 

  18. Poeran J, Opperer M, Rasul R et al (2016) Change in off-label use of bone morphogenetic protein in spine surgery and associations with adverse outcome. Global Spine J 6:650–659

    Article  Google Scholar 

  19. Roth A, Beckmann J, Bohndorf K et al (2018) Update of the German S3 guideline on atraumatic femoral head necrosis in adults. Orthopade 47:757–769

    Article  Google Scholar 

  20. Samara S, Dailiana Z, Varitimidis S et al (2013) Bone morphogenetic proteins (BMPs) expression in the femoral heads of patients with avascular necrosis. Mol Biol Rep 40:4465–4472

    CAS  Article  Google Scholar 

  21. Serong S, Haversath M, Jäger M et al (2019) Prevalence of CAM deformity and its influence on therapy success in patients with osteonecrosis of the femoral head. J Tissue Eng Regen Med 13:546–554

    CAS  Article  Google Scholar 

  22. Sun W, Li Z, Gao F et al (2014) Recombinant human bone morphogenetic protein‑2 in debridement and impacted bone graft for the treatment of femoral head osteonecrosis. Plos One 9:e100424

    Article  Google Scholar 

  23. Tran TN, Wolf M, Winter P et al (2022) Hip joint mechanics in patients with osteonecrosis of the femoral head following treatment by advanced core decompression. Clin Biomech 94:105635

    Article  Google Scholar 

  24. Wang ZL, He RZ, Tu B et al (2018) Drilling combined with adipose-derived stem cells and bone morphogenetic protein‑2 to treat femoral head epiphyseal necrosis in juvenile rabbits. Curr Med Sci 38:277–288

    CAS  Article  Google Scholar 

  25. Wu J, Piao Y, Liu Q et al (2021) Platelet-rich plasma-derived extracellular vesicles: a superior alternative in regenerative medicine? Cell Prolif 54:e13123

    Article  Google Scholar 

  26. Yan HC, Yu TT, Li J et al (2020) The delivery of extracellular vesicles loaded in biomaterial scaffolds for bone regeneration. Front Bioeng Biotechnol 8:1015

    Article  Google Scholar 

  27. Zhang XL, Wang YM, Chu K et al (2018) The application of PRP combined with TCP in repairing avascular necrosis of the femoral head after femoral neck fracture in rabbit. Eur Rev Med Pharmacol Sci 22:903–909

    PubMed  Google Scholar 

  28. Zhu T, Cui Y, Zhang M et al (2020) Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioact Mater 5:584–601

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. Jäger.

Ethics declarations

Conflict of interest

M. Jäger, A. Busch and A. Sowislok declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Additional information

figure qr

Scan QR code & read article online

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jäger, M., Busch, A. & Sowislok, A. Bioactivation of scaffolds in osteonecrosis. Orthopädie 51, 808–814 (2022).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Growth factors
  • Osseointegration
  • Bone substitutes
  • Biocompatible materials
  • Bone regeneration


  • Wachstumsfaktoren
  • Osseointegration
  • Knochenersatz
  • Biokompatible Materialien
  • Knochenheilung