Skip to main content

Partieller oder vollständiger Wechsel in der Hüftrevisionsendoprothetik?

Bedeutung von Off-Label-Anwendung und Mix & Match

Partial or full component exchange in hip revision?

The relevance of off-label use and mix & match

Zusammenfassung

Bei einem relevanten Anteil von Wechseleingriffen ist nur der partielle Austausch von Komponenten notwendig. Wenn in solchen Fällen die Originalimplantate des ehemaligen Herstellers nicht mehr verfügbar sind oder der Einsatz von Implantaten anderer Hersteller einen besseren Behandlungserfolg verspricht als der Verbleib im System, kann eine in den Gebrauchsanweisungen nicht empfohlene Kombination unterschiedlicher Produkte (Off-Label- bzw. „Mix & Match“-Anwendung) sinnvoll sein. Auch können anatomische Grenzsituationen (z. B. ausgeprägte Knochen- und Weichteildefekte, Adipositas) den Einsatz von Revisionsimplantaten außerhalb der vom Hersteller empfohlenen Indikationen als Off-Label-Einsatz notwendig machen. Da es für solche Situationen bislang keine formell bzw. juristisch abgesicherten Richtlinien gibt, wurden von der The European Federation of National Associations of Orthopaedics and Traumatology (EFORT) evidenz- und konsensbasierte Empfehlungen erarbeitet, die in diesem Beitrag zusammengefasst werden.

Abstract

Off-label use is frequently practiced in hip revision arthroplasty, as there may be indications for the application of implants for purposes outside the one the manufacturers intended (i.e. large bone and soft tissue defects, obesity). Patients may also benefit from selective application of mix & match in hip revision, when the exchange of one component only is necessary and the invasiveness of surgery can be reduced. Currently, there are no formal guidelines for these situations. Therefore, within a recent EFORT initiative, evidence- and consensus-based recommendations have been developed for the safe application of off-label use and mix & match in revision hip and knee arthroplasty.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2

Abbreviations

EFORT:

European Federation of National Associations of Orthopaedics and Traumatology

MDR :

Medical Device Regulation

PE :

Polyethylen

SCHEER :

Scientific Committee on Health, Environmental and Emerging Risks

Literatur

  1. Tucker K, Günther K‑P, Kjaersgaard-Andersen P, Lützner J, Kretzer JP, Nelissen R, Lange T, Zagra L (2021) EFORT recommendations for off-label use, mix & match and mismatch in hip and knee arthroplasty. EOR https://doi.org/10.1302/2058-5241.6.210080

  2. Weber P, Steinbrück A, Paulus AC, Woiczinski M, Schmidutz F, Fottner A, Jansson V (2017) Partial exchange in total hip arthroplasty : What can we combine? Orthopade 46(2):142–147

    CAS  PubMed  Article  Google Scholar 

  3. Dabis J et al (2020) Clinical outcomes and dislocation rates after hip reconstruction using the Bioball system. Hip Int 30(5):609–616

    PubMed  Article  Google Scholar 

  4. Helwig P et al (2013) Modular sleeves with ceramic heads in isolated acetabular cup revision in younger patients-laboratory and experimental analysis of suitability and clinical outcomes. Int Orthop 37(1):15–19

    PubMed  Article  Google Scholar 

  5. Hoberg M et al (2015) Outcome of a modular head-neck adapter system in revision hip arthroplasty. Arch Orthop Trauma Surg 135(10):1469–1474

    PubMed  Article  Google Scholar 

  6. Jack CM et al (2013) The use of ceramic-on-ceramic bearings in isolated revision of the acetabular component. Bone Joint J 95-B(3):333–338

    CAS  PubMed  Article  Google Scholar 

  7. Kim KW, Yoo JJ, Kim MN, Kim HJ (2019) Isolated Acetabular Liner Exchange for Polyethylene Wear and Osteolysis with Well-Fixed Metal Shell. Clin Orthop Surg 11(3):270–274

    PubMed  PubMed Central  Article  Google Scholar 

  8. Kim Y, Kim YH, Hwang KT, Choi IY (2014) Isolated acetabular revision with ceramic-on-ceramic bearings using a ceramic head with a metal sleeve. J Arthroplast 29(12):2420–2423

    Article  Google Scholar 

  9. Woelfle JV et al (2014) Significantly reduced leg length discrepancy and increased femoral offset by application of a head-neck adapter in revision total hip arthroplasty. J Arthroplasty 29(6):1301–1307

    PubMed  Article  Google Scholar 

  10. Callaghan JJ et al (2012) Cementing acetabular liners into secure cementless shells for polyethylene wear provides durable mid-term fixation. Clin Orthop Relat Res 470(11):3142–3147

    PubMed  PubMed Central  Article  Google Scholar 

  11. Delanois RE et al (2007) Cementation of a polyethylene liner into a metal shell. J Arthroplasty 22(5):732–737

    PubMed  Article  Google Scholar 

  12. Bensen CV, Del Schutte H Jr., Weaver KD (2000) Mechanical stability of polyethylene liners cemented into acetabular shells. Crit Rev Biomed Eng 28(1–2):7–10

    CAS  PubMed  Article  Google Scholar 

  13. Bedard NA et al (2020) Intermediate to Long-Term Follow-up of Cementing Liners into Well-Fixed Acetabular Components. J Bone Joint Surg Am 102(16):1397–1404

    PubMed  Article  Google Scholar 

  14. Rivkin G et al (2015) Long Term Results of Liner Polyethylene Cementation Technique in Revision for Peri-acetabular Osteolysis. J Arthroplasty 30(6):1041–1043

    PubMed  Article  Google Scholar 

  15. Brown TS et al (2019) Long-Term Outcomes of Constrained Liners Cemented into Retained, Well-Fixed Acetabular Components. J Bone Joint Surg Am 101(7):620–627

    PubMed  Article  Google Scholar 

  16. Young GH et al (2017) Cementing Constrained Liners Into Secure Cementless Shells: A Minimum 15-Year Follow-Up Study. J Arthroplasty 32(11):3480–3483

    PubMed  PubMed Central  Article  Google Scholar 

  17. Bruggemann A et al (2020) Safety of Use of Tantalum in Total Hip Arthroplasty. J Bone Joint Surg Am 102(5):368–374

    PubMed  Article  Google Scholar 

  18. Bruggemann A, Mallmin H, Hailer NP (2018) Do dual-mobility cups cemented into porous tantalum shells reduce the risk of dislocation after revision surgery? Acta Orthop 89(2):156–162

    PubMed  PubMed Central  Article  Google Scholar 

  19. Chalmers BP et al (2018) Cementation of a Dual Mobility Construct in Recurrently Dislocating and High Risk Patients Undergoing Revision Total Arthroplasty. J Arthroplasty 33(5):1501–1506

    PubMed  Article  Google Scholar 

  20. Plummer DR et al (2016) Dual-Mobility Articulations for Patients at High Risk for Dislocation. J Arthroplasty 31(9 Suppl):131–135

    PubMed  Article  Google Scholar 

  21. Wegrzyn J et al (2020) Cementation of a dual mobility cup into an existing well-fixed metal shell: a reliable option to manage wear-related recurrent dislocation in patients with high surgical risk. J Arthroplasty 35(9):2561–2566

    PubMed  Article  Google Scholar 

  22. Emara AK, Peterson J, Piuzzi NS, Klika A, Rajaravivarma R, Higuera-Rueda C, Roy S (2021) Effect of liner offset and inclination on cement retention strength of metal-in-metal acetabular constructs: A biomechanical study. J Orthop Res 39(4):813–820

    CAS  PubMed  Article  Google Scholar 

  23. Wegrzyn J et al (2013) Cementation of a dual-mobility acetabular component into a well-fixed metal shell during revision total hip arthroplasty: a biomechanical validation. J Orthop Res 31(6):991–997

    CAS  PubMed  Article  Google Scholar 

  24. Affatato S et al (2020) Revision of a monoblock metal-on-metal cup using a dual mobility component: is it a reasonable option? Mater (basel) 13:9

    Google Scholar 

  25. Chan MK et al (2019) Femoral side-only revision options for the Birmingham resurfacing arthroplasty. ANZ J Surg 89(9):1016–1021

    PubMed  Article  Google Scholar 

  26. Renner L, Faschingbauer M, Boettner F (2015) Is there a rationale to use highly cross-linked polyethylene in posterior-stabilized total knee arthroplasty? Ann Transl Med 3(5):63

    PubMed  PubMed Central  Google Scholar 

  27. Baecker H, Hardt S, Abdel MP, Perka C (2020) Tantalum Augments Combined with Antiprotrusio Cages for Massive Acetabular Defects in Revision. arthroplasty Arthroplast Today 6:704–709

    PubMed  Article  Google Scholar 

  28. Gunther KP et al (2014) Modular reconstruction in acetabular revision with antiprotrusio cages and metal augments : the cage-and-augment system. Oper Orthop Traumatol 26(2):141–155

    PubMed  Article  Google Scholar 

  29. Ploeger MM et al (2018) Obesity in Revision Total Knee Arthroplasty—a Systematic Review and Legal Assessment. Z Orthop Unfall 156(4):436–442

    PubMed  Article  Google Scholar 

  30. Kenney C et al (2019) A systematic review of the causes of failure of Revision Total Hip Arthroplasty. J Orthop 16(5):393–395

    PubMed  PubMed Central  Article  Google Scholar 

  31. Roth A, Khlopas A, George J, Churchill JL, Molloy R, Mont MA, Piuzzi NS, Higuera CA (2019) The Effect of Body Mass Index on 30-day Complications After Revision Total Hip and Knee Arthroplasty. J Arthroplast 34(7):S242–S248

    Article  Google Scholar 

  32. Herold F, Notzli H, Eijer H (2021) Short proximal components in modular revision stems carry a higher risk for stem fractures. Hip Int 31(3):398–403

    PubMed  Article  Google Scholar 

  33. Krueger DR et al (2020) Mechanical failure of 113 uncemented modular revision femoral components. Bone Joint J 102(5):573–579

    PubMed  Article  Google Scholar 

  34. Krull A, Morlock MM, Bishop NE (2018) Factors influencing taper failure of modular revision hip stems. Med Eng Phys 54:65–73

    CAS  PubMed  Article  Google Scholar 

  35. Lakstein D et al (2011) Fracture of cementless femoral stems at the mid-stem junction in modular revision hip arthroplasty systems. J Bone Joint Surg Am 93(1):57–65

    PubMed  Article  Google Scholar 

  36. Zindrick MR (2000) Orthopaedic surgery and Food and Drug Administration off-label uses. Clin Orthop Relat Res 378:31–38

    Article  Google Scholar 

  37. Benson M et al (2014) Ethical standards for orthopaedic surgeons. Bone Joint J 96-B(8):1130–1132

    CAS  PubMed  Article  Google Scholar 

  38. (MHRA), M.a.H.p.R.A., Guidance: Off-label use of a medical device. 2014.

  39. McFarland EG et al (2016) Reverse Total Shoulder Arthroplasty without Bone-Grafting for Severe Glenoid Bone Loss in Patients with Osteoarthritis and Intact Rotator Cuff. J Bone Joint Surg Am 98(21):1801–1807

    PubMed  Article  Google Scholar 

  40. Nunley P, Frank K, Stone M (2020) Patient Selection in Cervical Disc Arthroplasty. Int J Spine Surg 14(s2):S29–S35

    PubMed  PubMed Central  Article  Google Scholar 

  41. Taylor BC, Triplet JJ, El-Sabawi T (2019) Off-Label Use in Orthopaedic Surgery. J Am Acad Orthop Surg 27(17):e767–e774

    PubMed  Article  Google Scholar 

  42. Howard P (2018) Hip and knee mismatches recorded in the National Joint Registry. EFORT Open Rev 2018;3

  43. Stokes AP, Rutherford AD (2005) Mismatch of modular prosthetic components in total joint arthroplasty. The New Zaeland experience. Orthop Proc 87-B:321

    Google Scholar 

  44. (EPRD), E.D., Jahresbericht 2021. 2021.

  45. Ast MP, Mayman DJ, Bostrom MP, Gonzalez DVA, Haas SB (2019) Can we avoid implant-selection errors in total joint arthroplasty? Clin Orthop Relat Res 477(1):130–133

    PubMed  Article  Google Scholar 

  46. Odgaard A et al (2019) Mismatch ‘never events’ in hip and knee arthroplasty: a cohort and intervention study. Bone Joint J 101-B(8):960–969

    CAS  PubMed  Article  Google Scholar 

  47. Hohman DW, Affonso J, Anders M (2011) Ceramic-on-ceramic failure secondary to head-neck taper mismatch. Am J Orthop (belle Mead Nj) 40(11):571–573

    Google Scholar 

  48. Koper MC et al (2015) Severe Wear and Pseudotumor Formation Due to Taper Mismatch in a Total Hip Arthroplasty: A Case Report. JBJS Case Connect 5(e29):2

    Google Scholar 

  49. Guhrs J et al (2017) Stem taper mismatch has a critical effect on ceramic head fracture risk in modular hip arthroplasty. Clin Biomech (bristol Avon) 41:106–110

    Article  Google Scholar 

  50. Chana R et al (2012) Mixing and matching causing taper wear: corrosion associated with pseudotumour formation. J Bone Joint Surg Br 94(2):281–286

    CAS  PubMed  Article  Google Scholar 

  51. Hernigou P, Queinnec S, Flouzat Lachaniette CH (2013) One hundred and fifty years of history of the Morse taper: from Stephen A. Morse in 1864 to complications related to modularity in hip arthroplasty. Int Orthop 37(10):2081–2088

    PubMed  PubMed Central  Article  Google Scholar 

  52. Parekh J, Jones H, Chan N, Noble P (2013) Effect of angular mismatch tolerance on trunnion micro-motion in metal-on-metal THA designs. Orthop Proc 95:261

    Google Scholar 

  53. Peters RM et al (2020) To mix or not to mix? Medicolegal implications of mixed components in total hip arthroplasty. Acta Orthop 91(6):624–626

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Günther.

Ethics declarations

Interessenkonflikt

Teile des Beitrags basieren auf einem Konsensustreffen der Europäischen Orthopäden- und Unfallchirurgenvereinigung, das mit Mitteln der EFORT sowie der Universitätsmedizin Dresden gefördert und als „EFORT recommendations for off-label use, mix & match and mismatch in hip and knee arthroplasty“ vor kurzem publiziert wurde (Tucker et al. 2021). Verschiedene Autoren geben Vortragshonorare bzw. finanzielle Studienförderung durch folgende Hersteller an: Aesculap (J. Lützner), DePuy (L. Zagra), Lima (L. Zagra), Mathys (J. Lützner), Medacta (L. Zagra) Pfizer (J. Lützner), Zimmer Inc. (K.P. Günther, J. Lützner, L. Zagra). K. Tucker erhält Kostenersatz für seine Tätigkeit als Mitglied von ODEP- und Beyond Compliance-Initiative in Großbritannien. P. Kjaersgaard-Andersen, J.P. Kretzer, R. Nelissen und T. Lange geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Günther, K.P., Tucker, K., Kjaersgaard-Andersen, P. et al. Partieller oder vollständiger Wechsel in der Hüftrevisionsendoprothetik?. Orthopädie 51, 638–645 (2022). https://doi.org/10.1007/s00132-022-04276-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-022-04276-z

Schlüsselwörter

  • Konsensusentwicklung
  • Leitlinie
  • Adipositas
  • Hüftprothesenwechsel
  • Totale Hüftendoprothese

Keywords

  • Consensus development
  • Guideline
  • Obesity
  • Hip revision surgery
  • Total hip arthroplasty