Skip to main content

Advertisement

Log in

Welchen Nutzen hat die Rekonstruktion der patientenindividuellen Anatomie beim endoprothetischen Hüftgelenkersatz?

What are the benefits of patient-specific reconstruction in total hip replacement?

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

In der primären Endoprothetik des Hüftgelenkes wird der Erfolg der Operation maßgeblich von der Primärstabilität des Implantates und der Wiederherstellung der patientenindividuellen Gelenkbiomechanik bestimmt. Die dreidimensionale (Patho‑)Anatomie, Größenverhältnisse, Geometrie und Form des Azetabulums und proximalen Femurs sind bei Patienten mit fortgeschrittener Koxarthrose hochvariabel. Eine präzise präoperative Planung gilt daher als wesentliche Voraussetzung jedes Eingriffes.

Aktuelle Situation

Wissenschaftliche Ergebnisse belegen über Surrogatparameter (Offset und Beinlänge) patientenzentrierte Vorteile bei der Rekonstruktion einer funktionellen Gelenkgeometrie nach endoprothetischer Versorgung des Hüftgelenks. Die häufig in der Literatur zitierten „Zielzonen“ für die Positionierung der Pfanne stehen zunehmend im Fokus der wissenschaftlichen Diskussion. Individuell angepasste Zielzonen für die Implantatpositionierung ermöglichen potentiell eine Verringerung von Anschlagsphänomenen. Patienten nach Spondylodesen bzw. pathologischem spinopelvinem Alignement bedürfen im Besonderen einer patientenindividuellen Vorbereitung, Operationstechnik und Implantatwahl, um das Risiko für postoperative Instabilitäten zu verringern.

Abstract

Background

The success of primary total hip replacement (THR) is predominately determined by the primary stability of the implant and the restoration of the patient-specific joint biomechanics. The three-dimensional (patho-) anatomy, size, geometry, and shape of the acetabulum and proximal femur is highly variable in patients with advanced hip osteoarthritis. Accurate preoperative planning is an essential prerequisite for all replacement procedures.

Current situation

Current data demonstrates clinical advantages for patient-specific reconstruction of functional joint geometry via surrogate parameters (offset and leg length). Frequently cited “target zones” for the positioning and orientation of the cup are increasingly in the focus of scientific discussion, as individually adjusted target zones for implant positioning allow for a potential reduction of impingement risk. Patients with spinal fusions or pathologic spinopelvic alignment require that particular attention be paid to patient-specific preoperative preparation, the surgical technique, and implant selection in order to reduce the risk of postoperative instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

AI:

Anteinklination

AO :

Azetabuläres Offset

BL :

Beinlänge

CCD :

Zentrum-Kollum-Diaphysenwinkel

COR :

„Centre of rotation“

FA :

Femorale Anteversion

FO :

Femorales Offset

FSA :

Proximale femorale Achse

H :

Höhe

HO :

Hüftoffset

LA :

Biomechanischer Hebelarm des Hüftgelenks

LL :

Lendenlordosewinkel

LLD :

Beinlängendifferenz

LWS :

Lendenwirbelsäule

NSA :

„Neck shaft angle“

PE :

Polyethylen

PFA :

Becken-Femur-Winkel

PI :

Pelvic Incidence

PT :

Pelvic Tilt

SS :

Sacral Slope

Literatur

  1. Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370(9597):1508–1519

    PubMed  Google Scholar 

  2. Kurtz S et al (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785

    PubMed  Google Scholar 

  3. Kurtz SM et al (2009) Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res 467(10):2606–2612

    PubMed  PubMed Central  Google Scholar 

  4. Grimberg A et al (2019) Endoprothesenregister Deutschland (EPRD) Jahresbericht 2019. https://www.eprd.de/fileadmin/user_upload/Jahresbericht_2019_doppelseite_2.0.pdf. Zugegriffen: 28. Juni 2020

  5. Anakwe RE, Jenkins PJ, Moran M (2010) Predicting dissatisfaction after total hip arthroplasty: a study of 850 patients. J Arthroplasty 26(2):209–213

    PubMed  Google Scholar 

  6. Mahomed NN et al (2002) The importance of patient expectations in predicting functional outcomes after total joint arthroplasty. J Rheumatol 29(6):1273–1279

    PubMed  Google Scholar 

  7. Merle C et al (2014) How many different types of femora are there in primary hip osteoarthritis? An active shape modeling study. J Orthop Res 32(3):413–422

    CAS  PubMed  Google Scholar 

  8. Merle C et al (2019) High variability of acetabular offset in primary hip osteoarthritis influences acetabular reaming—a computed tomography-based anatomic study. J Arthroplasty 34(8):1808–1814

    PubMed  Google Scholar 

  9. Della Valle AG, Padgett DE, Salvati EA (2005) Preoperative planning for primary total hip arthroplasty. J Am Acad Orthop Surg 13(7):455–462

    PubMed  Google Scholar 

  10. Gamble P et al (2010) The accuracy of digital templating in uncemented total hip arthroplasty. J Arthroplasty 25(4):529–532

    PubMed  Google Scholar 

  11. Meermans G et al (2011) Preoperative radiographic assessment of limb-length discrepancy in total hip arthroplasty. Clin Orthop Relat Res 469(6):1677–1682

    PubMed  Google Scholar 

  12. Sugano N et al (1998) Computed-tomography-based computer preoperative planning for total hip arthroplasty. Comput Aided Surg 3(6):320–324

    CAS  PubMed  Google Scholar 

  13. Rubin PJ et al (1992) The morphology of the proximal femur. A three-dimensional radiographic analysis. J Bone Joint Surg Br 74(1):28–32

    CAS  PubMed  Google Scholar 

  14. Merle C et al (2012) Femoral offset is underestimated on anteroposterior radiographs of the pelvis but accurately assessed on anteroposterior radiographs of the hip. J Bone Joint Surg Br 94(4):477–482

    CAS  PubMed  Google Scholar 

  15. Innmann MM et al (2018) Additive influence of hip offset and leg length reconstruction on postoperative improvement in clinical outcome after total hip arthroplasty. J Arthroplasty 33(1):156–161

    PubMed  Google Scholar 

  16. Dorr LD et al (2009) Combined anteversion technique for total hip arthroplasty. Clin Orthop Relat Res 467(1):119–127

    PubMed  Google Scholar 

  17. Buckland AJ et al (2017) Dislocation of a primary total hip arthroplasty is more common in patients with a lumbar spinal fusion. Bone Joint J 99(5):585–591

    PubMed  Google Scholar 

  18. Grammatopoulos G et al (2019) 2018 Frank Stinchfield award: spinopelvic hypermobility is associated with an inferior outcome after THA: examining the effect of spinal arthrodesis. Clin Orthop Relat Res 477(2):310–321

    PubMed  Google Scholar 

  19. Grammatopoulos G et al (2015) The effect of orientation of the acetabular component on outcome following total hip arthroplasty with small diameter hard-on-soft bearings. Bone Joint J 97(2):164–172

    PubMed  Google Scholar 

  20. Renkawitz T et al (2016) Leg length and offset differences above 5 mm after total hip arthroplasty are associated with altered gait kinematics. Gait Posture 49:196–201

    Google Scholar 

  21. Widmer KH (2020) The impingement-free, prosthesis-specific, and anatomy-adjusted combined target zone for component positioning in THA depends on design and implantation parameters of both components. Clin Orthop Relat Res 478(8):1904–1918

    PubMed  Google Scholar 

  22. Bedard NA et al (2016) Abnormally high dislocation rates of total hip arthroplasty after spinal deformity surgery. J Arthroplasty 31(12):2884–2885

    PubMed  Google Scholar 

  23. Cameron HU, Pilliar RM, MacNab I (1973) The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res 7(4):301–311

    CAS  PubMed  Google Scholar 

  24. Haddad RJ Jr., Cook SD, Thomas KA (1987) Biological fixation of porous-coated implants. J Bone Joint Surg Am 69(9):1459–1466

    PubMed  Google Scholar 

  25. Merle C et al (2012) Long-term results of cementless femoral reconstruction following intertrochanteric osteotomy. Int Orthop 36(6):1123–1128

    PubMed  PubMed Central  Google Scholar 

  26. Husmann O et al (1997) Three-dimensional morphology of the proximal femur. J Arthroplasty 12(4):444–450

    CAS  PubMed  Google Scholar 

  27. Nakahara I et al (2011) Gender differences in 3D morphology and bony impingement of human hips. J Orthop Res 29(3):333–339. https://doi.org/10.1002/jor.21265

    Article  PubMed  Google Scholar 

  28. Sariali E et al (2009) Three-dimensional hip anatomy in osteoarthritis. Analysis of the femoral offset. J Arthroplasty 24(6):990–997

    PubMed  Google Scholar 

  29. Streit MR et al (2014) 10-year results of the uncemented Allofit press-fit cup in young patients. Acta Orthop 85(4):368–374

    PubMed  PubMed Central  Google Scholar 

  30. Streit MR et al (2013) Long-term (20- to 25-year) results of an uncemented tapered titanium femoral component and factors affecting survivorship. Clin Orthop Relat Res 471(10):3262–3269

    PubMed  PubMed Central  Google Scholar 

  31. Merle C, Clarius M, Aldinger PR (2010) Long-term results of uncemented stems in total hip arthroplasty: analysis of survival rates with a minimum 15-year follow-up. Orthopade 39(1):80–86

    CAS  PubMed  Google Scholar 

  32. McLaughlin JR, Lee KR (2011) Total hip arthroplasty with an uncemented tapered femoral component in patients younger than 50 years. J Arthroplasty 26(1):9–15

    PubMed  Google Scholar 

  33. Aldinger PR et al (2009) Uncemented grit-blasted straight tapered titanium stems in patients younger than fifty-five years of age - fifteen to twenty-year results. J Bone Joint Surg Am. https://doi.org/10.2106/JBJS.H.00297

    Article  PubMed  Google Scholar 

  34. Yerasimides JG (2010) Use of the Fitmore® hip stem bone-preserving system for the minimally invasive anterior-supine approach in hip replacement. Am J Orthop (Belle Mead NJ) 39(10):13–16

    Google Scholar 

  35. Innmann MM et al (2019) Fifty-six percent of proximal femoral cortical hypertrophies 6 to 10 years after total hip arthroplasty with a short cementless curved hip stem—a cause for concern? BMC Musculoskelet Disord 20(1):261

    PubMed  PubMed Central  Google Scholar 

  36. Kim YH et al (2011) A prospective short-term outcome study of a short metaphyseal fitting total hip arthroplasty. J Arthroplasty. https://doi.org/10.1016/j.arth.2011.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lombardi AV Jr., Berend KR, Adams JB (2009) A short stem solution: through small portals. Orthopedics. https://doi.org/10.3928/01477447-20090728-09

    Article  PubMed  Google Scholar 

  38. Goebel D, Schultz W (2009) The Mayo cementless femoral component in active patients with osteoarthritis. Hip Int 19(2):206–210

    PubMed  Google Scholar 

  39. Friberg O (1983) Clinical symptoms and biomechanics of lumbar spine and hip joint in leg length inequality. Spine 8(6):643–651

    CAS  PubMed  Google Scholar 

  40. Gurney B et al (2001) Effects of limb-length discrepancy on gait economy and lower-extremity muscle activity in older adults. J Bone Joint Surg Am 83(6):907–915

    CAS  PubMed  Google Scholar 

  41. Nercessian OA, Piccoluga F, Eftekhar NS (1994) Postoperative sciatic and femoral nerve palsy with reference to leg lengthening and medialization/lateralization of the hip joint following total hip arthroplasty. Clin Orthop Relat Res 304:165–171

    Google Scholar 

  42. Stone RG et al (1985) Evaluation of sciatic nerve compromise during total hip arthroplasty. Clin Orthop Relat Res 201:26–31

    Google Scholar 

  43. Asayama I et al (2005) Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty. J Arthroplasty 20(4):414–420

    PubMed  Google Scholar 

  44. McGrory BJ et al (1995) Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg Br 77(6):865–869

    CAS  PubMed  Google Scholar 

  45. Charles MN et al (2005) Soft-tissue balancing of the hip: the role of femoral offset restoration. Instr Course Lect 54:131–141

    PubMed  Google Scholar 

  46. Little NJ et al (2009) Acetabular polyethylene wear and acetabular inclination and femoral offset. Clin Orthop Relat Res 467(11):2895–2900

    PubMed  PubMed Central  Google Scholar 

  47. Sakalkale DP et al (2001) Effect of femoral component offset on polyethylene wear in total hip arthroplasty. Clin Orthop Relat Res 388:125–134

    Google Scholar 

  48. Lim LA, Carmichael SW, Cabanela ME (1999) Biomechanics of total hip arthroplasty. Anat Rec 257(3):110–116

    CAS  PubMed  Google Scholar 

  49. Bonnin MP et al (2012) Do we medialise the hip centre of rotation in total hip arthroplasty? Influence of acetabular offset and surgical technique. Hip Int 22(4):371–378

    PubMed  Google Scholar 

  50. Meermans G, Doorn JV, Kats JJ (2016) Restoration of the centre of rotation in primary total hip arthroplasty: the influence of acetabular floor depth and reaming technique. Bone Joint J 98(12):1597–1603

    PubMed  Google Scholar 

  51. Tanzer M (1998) Role and results of the high hip center. Orthop Clin North Am 29(2):241–247

    CAS  PubMed  Google Scholar 

  52. Komiyama K et al (2019) Does high hip centre affect dislocation after total hip arthroplasty for developmental dysplasia of the hip? Int Orthop 43(9):2057–2063

    PubMed  Google Scholar 

  53. Fukushi JI et al (2018) Does hip center location affect the recovery of abductor moment after total hip arthroplasty? Orthop Traumatol Surg Res 104(8):1149–1153

    PubMed  Google Scholar 

  54. Lewinnek GE et al (1978) Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 60(2):217–220

    CAS  PubMed  Google Scholar 

  55. Abdel MP et al (2016) What safe zone? The vast majority of dislocated THAs are within the Lewinnek safe zone for acetabular component position. Clin Orthop Relat Res 474(2):386–391

    PubMed  Google Scholar 

  56. Esposito CI et al (2015) Cup position alone does not predict risk of dislocation after hip arthroplasty. J Arthroplasty 30(1):109–113

    PubMed  Google Scholar 

  57. Renkawitz T et al (2015) Impingement-free range of movement, acetabular component cover and early clinical results comparing ‘femur-first’ navigation and ‘conventional’ minimally invasive total hip arthroplasty: a randomised controlled trial. Bone Joint J 97(7):890–898

    PubMed  Google Scholar 

  58. Esposito CI et al (2016) Does degenerative lumbar spine disease influence femoroacetabular flexion in patients undergoing total hip arthroplasty? Clin Orthop Relat Res 474(8):1788–1797

    PubMed  PubMed Central  Google Scholar 

  59. Innmann MM et al (2019) Can spinopelvic mobility be predicted in patients awaiting total hip arthroplasty? A prospective, diagnostic study of patients with end-stage hip osteoarthritis. Bone Joint J 101(8):902–909

    PubMed  Google Scholar 

  60. Stefl M et al (2017) Spinopelvic mobility and acetabular component position for total hip arthroplasty. Bone Joint J 99(1):37–45

    PubMed  Google Scholar 

  61. Heckmann N et al (2018) Late dislocation following total hip arthroplasty: spinopelvic imbalance as a causative factor. J Bone Joint Surg Am 100(21):1845–1853

    PubMed  Google Scholar 

  62. Esposito CI et al (2018) Total hip arthroplasty patients with fixed spinopelvic alignment are at higher risk of hip dislocation. J Arthroplasty 33(5):1449–1454

    PubMed  Google Scholar 

  63. An VVG et al (2017) Prior lumbar spinal fusion is associated with an increased risk of dislocation and revision in total hip arthroplasty: a meta-analysis. J Arthroplasty 33(1):297–300

    PubMed  Google Scholar 

  64. Perfetti DC et al (2016) Prosthetic dislocation and revision after primary total hip arthroplasty in lumbar fusion patients: a propensity score matched-pair analysis. J Arthroplasty 32(5):1635–1640.e1

    PubMed  Google Scholar 

  65. Malkani AL et al (2018) Total hip arthroplasty in patients with previous lumbar fusion surgery: are there more dislocations and revisions? J Arthroplasty 33(4):1189–1193

    PubMed  Google Scholar 

  66. Salib CG et al (2019) Lumbar fusion involving the sacrum increases dislocation risk in primary total hip arthroplasty. Bone Joint J 101(2):198–206

    PubMed  Google Scholar 

  67. Innmann MM et al (2020) Pathologic spinopelvic balance in patients with hip osteoarthritis : preoperative screening and therapeutic implications. Orthopade 49(10):860–869

    PubMed  Google Scholar 

  68. Sariali E et al (2009) Mathematical evaluation of jumping distance in total hip arthroplasty: influence of abduction angle, femoral head offset, and head diameter. Acta Orthop 80(3):277–282

    PubMed  PubMed Central  Google Scholar 

  69. Nessler JM et al (2020) Use of dual mobility cups in patients undergoing primary total hip arthroplasty with prior lumbar spine fusion. Int Orthop 44(5):857–862

    PubMed  Google Scholar 

  70. Abdel MP (2019) Simplifying the hip-spine relationship for total hip arthroplasty: when do I use dual-mobility and why does it work? J Arthroplasty 34(7S):S74–S75

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Merle M.Sc..

Ethics declarations

Interessenkonflikt

C. Merle erhält von Heraeus, Johnson & Johnson und ZimmerBiomet Referentenhonorare bzw. institutionelle Forschungsförderung. P. Sadoghi erhält von Johnson & Johnson, Implantcast und Medacta Referentenhonorare bzw. institutionelle Forschungsförderungen. T. Renkawitz erhielt von DePuy, Zimmer, dem Bundesministerium für Bildung und Forschung, der Deutschen Arthrose-Hilfe, der Otto Bock Stiftung, dem Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung, der Stiftung Oskar-Helene-Heim Berlin und der Vielberth-Stiftung Referentenhonorare bzw. Forschungsförderung. Darüber hinaus ist er im Herausgeber-Board von Der Orthopäde und Der Unfallchirurg sowie im „international advisory board“ des Journal of the American Academy of Orthopaedic Surgeons. M. M. Innmann und F. Westhauser geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merle, C., Innmann, M.M., Westhauser, F. et al. Welchen Nutzen hat die Rekonstruktion der patientenindividuellen Anatomie beim endoprothetischen Hüftgelenkersatz?. Orthopäde 50, 287–295 (2021). https://doi.org/10.1007/s00132-021-04087-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-021-04087-8

Schlüsselwörter

Keywords

Navigation