Skip to main content

Advertisement

Log in

Neue Technologien (Robotik, „custom made“) in der unikondylären Endoprothetik – Pro

New technologies (robotics, custom-made) in unicondylar knee arthroplasty—pro

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die unikondyläre Knieendoprothetik bietet den Vorteil, dass partielle degenerative Veränderungen mit partiellen prothetischen Lösungen adressiert werden können, wodurch möglichst viel des nativen Gelenks, inklusive der Kreuzbänder, erhalten wird. Dem gegenüber stehen die, im Vergleich zur totalen Knieendoprothetik, bis heute immer noch höheren Revisionszahlen. In der Literatur werden als Ursache u. a. sowohl eine ungenügende Passform der Komponenten als auch chirurgische Fehler genannt. Die Verwendung von neuen Technologien, um eine bessere Passform und eine höhere chirurgische Präzision und Reproduzierbarkeit zu erreichen, stellt daher einen vielversprechenden Lösungsansatz dar.

Individuelle Endoprothetik

Die individuelle Endoprothetik bietet den Vorteil, dass die Prothese an die individuelle Anatomie des jeweiligen Patienten angepasst wird und nicht die Anatomie des Patienten an die Prothese, so wie es bei Standardprothesen der Fall ist. Dadurch kann eine optimale Passform der Prothese erreicht und gleichzeitig auf übermäßige Knochenresektionen und Weichteil-Releases verzichtet werden.

Robotik

Die Verwendung von Robotik in der Endoprothetik erleichtert die korrekte Ausführung der Knochenresektionen und die Ausrichtung der Komponenten. Dies gewährleistet eine hohe und reproduzierbare Präzision auch für Chirurgen mit niedrigen Fallzahlen. Studien zur individuellen und roboterassistierten Versorgung berichten von vielversprechenden Ergebnissen, jedoch müssen Langzeitergebnisse hochwertiger randomisierten Studien abgewartet werden, um eine wissenschaftlich fundierte Aussage treffen zu können.

Abstract

Background

Unicondylar knee arthroplasty offers the advantage that partial degenerative changes can be addressed with partial prosthetic solutions, thus preserving as much of the native joint as possible, including the cruciate ligaments. On the other hand, the number of revisions is still higher than for total knee endoprosthetics. In the literature, the causes mentioned are insufficient fit of the components as well as surgical errors. The use of new technologies to achieve a better fit and higher surgical precision and reproducibility, therefore, represents a promising approach.

Individual endoprosthetics

Individual endoprosthetics offers the advantage that the prosthesis is adapted to the individual anatomy of each patient and not the patient’s anatomy to the prosthesis, as is the case with standard prostheses. This allows for an optimal fit of the prosthesis while avoiding excessive bone resections and soft tissue releases.

Robotics

The use of robotics in endoprosthetics makes it easier to correctly perform bone resections and align components. This ensures high and reproducible precision even for surgeons with lower case numbers. Studies on individual unicondylar endoprosthetics and robotics are reporting promising results. However, long-term results of high-quality randomized studies must be awaited in order to make a scientifically sound statement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

PSI:

Patientenspezifische Instrumente

UKA:

Unicondylar/Unicompartmental Knee Arthoplasty

Literatur

  1. Abdelbadie A, Toreih AA, Radwan MA (2018) ACL status in arthroplasty patients, why not to preserve? SICOT J 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alvand A, Khan T, Jenkins C, Rees JL, Jackson WF, Dodd CAF, Murray DW, Price AJ (2018) The impact of patient-specific instrumentation on unicompartmental knee arthroplasty: a prospective randomised controlled study. Knee Surg Sports Traumatol Arthrosc 26:1662–1670

    Article  PubMed  Google Scholar 

  3. Anon National joint registry 15th annual report 2018 healthcare quality improvement partnership (HQIP). https://www.hqip.org.uk/resource/national-joint-registry-15th-annual-report-2018/#.XmXiDEoxmCo

  4. Baker P, Jameson S, Critchley R, Reed M, Gregg P, Deehan D (2013) Center and surgeon volume influence the revision rate following unicondylar knee replacement: an analysis of 23,400 medial cemented unicondylar knee replacements. J Bone Joint Surg Am 95:702–709

    Article  PubMed  Google Scholar 

  5. Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM (2012) Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg Br 94:95–99

    Article  CAS  PubMed  Google Scholar 

  6. Beckmann J, Steinert AF, Huber B, Rudert M, Köck FX, Buhs M, Rolston L (2020) Customised bi-compartmental knee arthroplasty shows encouraging 3‑year results: findings of a prospective, multicenter study. Knee Surg Sports Traumatol Arthrosc 28:1742–1749

    Article  CAS  PubMed  Google Scholar 

  7. Bell SW, Anthony I, Jones B, MacLean A, Rowe P, Blyth M (2016) Improved accuracy of component positioning with robotic-assisted unicompartmental knee arthroplasty: data from a prospective, randomized controlled study. J Bone Joint Surg Am 98:627–635

    Article  PubMed  Google Scholar 

  8. Blyth MJG, Anthony I, Rowe P, Banger MS, MacLean A, Jones B (2017) Robotic arm-assisted versus conventional unicompartmental knee arthroplasty: exploratory secondary analysis of a randomised controlled trial. Bone Joint Res 6:631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bonnin MP, Schmidt A, Basiglini L, Bossard N, Dantony E (2013) Mediolateral oversizing influences pain, function, and flexion after TKA. Knee Surg Sports Traumatol Arthrosc 21:2314–2324

    Article  PubMed  PubMed Central  Google Scholar 

  10. Burger JA, Kleeblad LJ, Laas N, Pearle AD (2020) Mid-term survivorship and patient-reported outcomes of robotic-arm assisted partial knee arthroplasty. Bone Joint J 102-B:108–116

    Article  PubMed  Google Scholar 

  11. Carpenter DP, Holmberg RR, Quartulli MJ, Barnes CL (2014) Tibial plateau coverage in UKA: a comparison of patient specific and off-the-shelf implants. J Arthroplasty 29:1694–1698

    Article  PubMed  Google Scholar 

  12. Chatellard R, Sauleau V, Colmar M, Robert H, Raynaud G, Brilhault J (2013) Medial unicompartmental knee arthroplasty: does tibial component position influence clinical outcomes and arthroplasty survival? Orthop Traumatol Surg Res 99:S219–S225

    Article  CAS  PubMed  Google Scholar 

  13. Chau R, Gulati A, Pandit H, Beard DJ, Price AJ, Dodd CAF, Gill HS, Murray DW (2009) Tibial component overhang following unicompartmental knee replacement—does it matter? Knee 16:310–313

    Article  CAS  PubMed  Google Scholar 

  14. Cobb J, Henckel J, Gomes P, Harris S, Jakopec M, Rodriguez F, Barrett A, Davies B (2006) Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system. J Bone Joint Surg Br 88:188–197

    Article  CAS  PubMed  Google Scholar 

  15. Conditt M, Coon T, Roche M, Pearle A, Borus T, Buechel F, Dounchis J (2013) Two year survivorship of robotically guided unicompartmental knee arthroplasty. Orthop Proc 95-B:294–294

    Google Scholar 

  16. Conditt MA, Roche MW (2009) Minimally invasive robotic-arm-guided unicompartmental knee arthroplasty. J Bone Joint Surg Am 91:63–68

    Article  PubMed  Google Scholar 

  17. Demange MK, Von Keudell A, Probst C, Yoshioka H, Gomoll AH (2015) Patient-specific implants for lateral unicompartmental knee arthroplasty. Int Orthop 39:1519–1526

    Article  PubMed  Google Scholar 

  18. Dunbar NJ, Roche MW, Park BH, Branch SH, Conditt MA, Banks SA (2012) Accuracy of dynamic tactile-guided unicompartmental knee arthroplasty. J Arthroplasty 27:803–808.e1

    Article  PubMed  Google Scholar 

  19. Dyrhovden GS, Lygre SHL, Badawy M, Gøthesen Ø, Furnes O (2017) Have the causes of revision for total and unicompartmental knee arthroplasties changed during the past two decades? Clin Orthop Relat Res 475:1874–1886

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ettinger M, Savov P, Calliess T, Windhagen H (2018) Robotics-mechanical bridge between imaging and patient. Orthopade 47:820–825

    Article  CAS  PubMed  Google Scholar 

  21. Flury A, Hasler J, Dimitriou D, Antoniadis A, Finsterwald M, Helmy N (2019) Midterm clinical and radiographic outcomes of 115 consecutive patient-specific unicompartmental knee arthroplasties. Knee 26:889–896

    Article  PubMed  Google Scholar 

  22. Endoprothesenregister Deutschland (2019) EPRD Jahresbericht 2019. https://www.eprd.de/de/ueber-uns/aktuelles/artikel/eprd-jahresbericht-2019/. Zugegriffen: 25. Jan. 2020

  23. Heyse TJ, El-Zayat BF, De Corte R, Chevalier Y, Scheys L, Innocenti B, Fuchs-Winkelmann S, Labey L (2014) UKA closely preserves natural knee kinematics in vitro. Knee Surg Sports Traumatol Arthrosc 22:1902–1910

    Article  PubMed  Google Scholar 

  24. Heyse TJ, El-Zayat BF, De Corte R, Scheys L, Chevalier Y, Fuchs-Winkelmann S, Labey L (2014) Biomechanics of medial unicondylar in combination with patellofemoral knee arthroplasty. Knee 21:S3–S9

    Article  PubMed  Google Scholar 

  25. Hirschmann MT, Behrend H (2018) Functional knee phenotypes: a call for a more personalised and individualised approach to total knee arthroplasty? Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-018-4973-8

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hirschmann MT, Friederich NF, Becker R, Karlsson J (2019) Personalised medicine in knee arthroplasty: we need more science! Knee Surg Sports Traumatol Arthrosc 27:1357–1358

    Article  PubMed  Google Scholar 

  27. Iturriaga C, Salem HS, Ehiorobo JO, Sodhi N, Mont MA (2020) Robotic-assisted versus manual unicompartmental knee arthroplasty: a systematic review. Surg Technol Int 37:sti37/1316

    Google Scholar 

  28. Jones GG, Clarke S, Harris S, Jaere M, Aldalmani T, de Klee P, Cobb JP (2019) A novel patient-specific instrument design can deliver robotic level accuracy in unicompartmental knee arthroplasty. Knee 26:1421–1428

    Article  PubMed  Google Scholar 

  29. Jones GG, Logishetty K, Clarke S, Collins R, Jaere M, Harris S, Cobb JP (2018) Do patient-specific instruments (PSI) for UKA allow non-expert surgeons to achieve the same saw cut accuracy as expert surgeons? Arch Orthop Trauma Surg 138:1601–1608

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kang K‑T, Son J, Suh D‑S, Kwon SK, Kwon O‑R, Koh Y‑G (2018) Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: a finite element analysis. Bone Joint Res 7:20–27

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kayani B, Haddad FS (2019) Robotic unicompartmental knee arthroplasty: current challenges and future perspectives. Bone Joint Res 8:228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kayani B, Konan S, Pietrzak JRT, Huq SS, Tahmassebi J, Haddad FS (2018) The learning curve associated with robotic-arm assisted unicompartmental knee arthroplasty: a prospective cohort study. Bone Joint J 100-B:1033–1042

    Article  CAS  PubMed  Google Scholar 

  33. Kizaki K, Shanmugaraj A, Yamashita F, Simunovic N, Duong A, Khanna V, Ayeni OR (2019) Total knee arthroplasty using patient-specific instrumentation for osteoarthritis of the knee: a meta-analysis. BMC Musculoskelet Disord 20:561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koh Y‑G, Park K‑M, Lee H‑Y, Kang K‑T (2019) Influence of tibiofemoral congruency design on the wear of patient-specific unicompartmental knee arthroplasty using finite element analysis. Bone Joint Res 8:156–164

    Article  PubMed  PubMed Central  Google Scholar 

  35. Leenders AM, Schotanus MGM, Wind RJP, Borghans RAP, Kort NP (2018) A high rate of tibial plateau fractures after early experience with patient-specific instrumentation for unicompartmental knee arthroplasties. Knee Surg Sports Traumatol Arthrosc 26:3491–3498

    Article  CAS  PubMed  Google Scholar 

  36. León-Muñoz VJ, Martínez-Martínez F, López-López M, Santonja-Medina F (2019) Patient-specific instrumentation in total knee arthroplasty. Expert Rev Med Devices 16:555–567

    Article  PubMed  CAS  Google Scholar 

  37. Li K, Saffarini M, Valluy J, Desseroit M‑C, Morvan Y, Telmon N, Cavaignac E (2019) Sexual and ethnic polymorphism render prosthetic overhang and under-coverage inevitable using off-the shelf TKA implants. Knee Surg Sports Traumatol Arthrosc 27:2130–2139

    Article  PubMed  Google Scholar 

  38. Liddle AD, Judge A, Pandit H, Murray DW (2014) Adverse outcomes after total and unicompartmental knee replacement in 101,330 matched patients: a study of data from the national joint registry for England and Wales. Lancet 384:1437–1445

    Article  PubMed  Google Scholar 

  39. Liddle AD, Pandit H, Judge A, Murray DW (2015) Optimal usage of unicompartmental knee arthroplasty: a study of 41,986 cases from the national joint registry for England and Wales. Bone Joint J 97:1506–1511

    Article  PubMed  Google Scholar 

  40. Lorenz A, Röttgerkamp H, Bobrowitsch E, Leichtle CI, Leichtle UG (2016) Tibial rotation influences anterior knee stability—a robot-aided in-vitro study. Clin Biomech (Bristol, Avon) 32:131–137

    Article  Google Scholar 

  41. Mannan A, Smith TO (2016) Favourable rotational alignment outcomes in PSI knee arthroplasty: a level 1 systematic review and meta-analysis. Knee 23:186–190

    Article  CAS  PubMed  Google Scholar 

  42. Meier M, Zingde S, Best R, Schroeder L, Beckmann J, Steinert AF (2019) High variability of proximal tibial asymmetry and slope: a CT data analysis of 15,807 osteoarthritic knees before TKA. Knee Surg Sports Traumatol Arthrosc 28(4):1105–1112

    Article  PubMed  Google Scholar 

  43. Meier M, Zingde S, Steinert A, Kurtz W, Koeck F, Beckmann J (2019) What is the possible impact of high variability of distal femoral geometry on TKA? A CT data analysis of 24,042 knees. Clin Orthop Relat Res 477:561–570

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ng CTJ, Newman S, Harris S, Clarke S, Cobb J (2017) Patient-specific instrumentation improves alignment of lateral unicompartmental knee replacements by novice surgeons. Int Orthop 41:1379–1385

    Article  PubMed  Google Scholar 

  45. Ogura T, Le K, Merkely G, Bryant T, Minas T (2019) A high level of satisfaction after bicompartmental individualized knee arthroplasty with patient-specific implants and instruments. Knee Surg Sports Traumatol Arthrosc 27:1487–1496

    Article  PubMed  Google Scholar 

  46. Pearle AD, van der List JP, Lee L, Coon TM, Borus TA, Roche MW (2017) Survivorship and patient satisfaction of robotic-assisted medial unicompartmental knee arthroplasty at a minimum two-year follow-up. Knee 24:419–428

    Article  PubMed  PubMed Central  Google Scholar 

  47. Plate JF, Mofidi A, Mannava S, Smith BP, Lang JE, Poehling GG, Conditt MA, Jinnah RH (2013) Achieving accurate ligament balancing using robotic-assisted unicompartmental knee arthroplasty. Adv Orthop 2013:837167

    Article  PubMed  PubMed Central  Google Scholar 

  48. Russell R, Brown T, Huo M, Jones R (2014) Patient-specific instrumentation does not improve alignment in total knee arthroplasty. J Knee Surg 27:501–504

    Article  PubMed  Google Scholar 

  49. Sanz-Ruiz P, Matas-Diez JA, Carbo-Laso E, Perez-Mañanes R, Vaquero-Martín J (2019) Patient-specific instrument can improve functional and radiographic results during learning curve for oxford unicompartmental knee arthroplasty. J Knee Surg 32:180–185

    Article  PubMed  Google Scholar 

  50. Schotanus MGM, Boonen B, van der Weegen W, Hoekstra H, van Drumpt R, Borghans R, Vos R, van Rhijn L, Kort NP (2019) No difference in mid-term survival and clinical outcome between patient-specific and conventional instrumented total knee arthroplasty: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 27:1463–1468

    Article  CAS  PubMed  Google Scholar 

  51. Sinha R (2014) Customized, individually made unicondylar knee replacement: a prospective, multicenter study of 2‑year clinical outcomes

    Google Scholar 

  52. St Mart J‑P, de Steiger RN, Cuthbert A, Donnelly W (2020) The three-year survivorship of robotically assisted versus non-robotically assisted unicompartmental knee arthroplasty. Bone Joint J 102-B:319–328

    Article  PubMed  Google Scholar 

  53. Yeroushalmi D, Feng J, Nherera L, Trueman P, Schwarzkopf R (2020) Early economic analysis of robotic-assisted unicondylar knee arthroplasty may be cost effective in patients with end-stage osteoarthritis. J Knee Surg. https://doi.org/10.1055/s-0040-1712088

    Article  PubMed  Google Scholar 

  54. Zhang F, Li H, Ba Z, Bo C, Li K (2019) Robotic arm-assisted vs conventional unicompartmental knee arthroplasty: a meta-analysis of the effects on clinical outcomes. Medicine (Baltimore) 98:e16968

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Beckmann.

Ethics declarations

Interessenkonflikt

T. Calliess, C. Tibesku und J. Beckmann erhalten Beraterhonorare von Firmen, die personalisierte Medizin entwickeln und verkaufen. M. Meier gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meier, M., Calliess, T., Tibesku, C. et al. Neue Technologien (Robotik, „custom made“) in der unikondylären Endoprothetik – Pro. Orthopäde 50, 130–135 (2021). https://doi.org/10.1007/s00132-020-04058-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-020-04058-5

Schlüsselwörter

Keywords

Navigation