Skip to main content
Log in

Pathologic spinopelvic balance in patients with hip osteoarthritis

Preoperative screening and therapeutic implications

Pathologische spinopelvine Balance bei Patienten mit Coxarthrose

Präoperatives Screening und therapeutische Konsequenzen

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Abstract

Recently spinopelvic balance and mobility, i.e. the dynamic interaction of the spine, pelvis and the femur in the sagittal plane between different postures, has been identified as a relevant factor influencing the outcome of primary total hip arthroplasty (THA). Individual spinopelvic balance and mobility seem to affect patient reported outcome and the risk of impingement and dislocation following THA. The aim of this article is to provide a concise overview of normal and pathologic spinopelvic alignment, to characterize relevant spinopelvic parameters and the diagnostic assessment in patients with hip OA and to discuss potential implications for THA with respect to implant selection and component orientation.

Spinopelvic characteristics are highly variable. Patients with stiff lumbar spines and mobile hips seem to be at an increased risk of impingement and dislocation and can be screened with single lateral standing radiographs of the spinopelvic complex before THA. In patients with hip and spine pathology, particular attention should be paid to evaluate the individual pathoanatomy of the hip and established clinical measurements should be diligently taken with respect to the reconstruction of the center of rotation, hip offset, leg length and soft tissue tension in order to minimize the risk of impingement and dislocation. No evidence-based recommendations for novel target zones concerning implant position can currently be made. In patients at risk 36 mm heads should be used whenever possible. In high risk patients, such as the combination of a stiff unbalanced lumbar spine (“flatback”) and a mobile hip or in the presence of long spinal fusions or fusions involving the sacrum, dual mobility cups offer additional stability.

Zusammenfassung

In den letzten Jahren wurden das spinopelvine Alignement und die spinopelvine Mobilität – die dynamische Interaktion der Wirbelsäule, des Beckens und des Femurs in verschiedenen Körperhaltungen in der sagittalen Ebene – als klinisch relevanter Einflussfaktor auf das postoperative Outcome und das Luxationsrisiko nach Implantation einer Hüfttotalendoprothese (HTEP) identifiziert. Das Ziel dieses Beitrags ist es, einen Überblick über normale und pathologische Formen der spinopelvinen Mobilität zu geben, sowie klinisch relevante spinopelvine Parameter und deren Erhebung bei Patienten mit fortgeschrittener Coxarthrose zu beschreiben und die potentiellen Konsequenzen für die Versorgung mit einer HTEP bezüglich Implantatauswahl und -positionierung zu diskutieren. Die spinopelvinen Charakteristika sind individuell hochvariabel. Patienten mit einer steifen Lendenwirbelsäule (LWS) und relativ mobilen Hüftgelenken scheinen ein deutlich erhöhtes Risiko für ein Impingement und eine Luxation nach Implantation einer HTEP zu haben. Diese Patienten können durch ein präoperatives Screening mittels stehenden seitlichen Röntgenaufnahmen des spinopelvinen Komplexes identifiziert werden. Bei Patienten mit einer gleichzeitig vorliegenden Pathologie von LWS und Hüfte sollte ein besonderes Augenmerk auf die individuelle Pathoanatomie der Hüfte gelegt werden um entsprechend der Prothesenplanung das Drehzentrum, das Hüft-Offset, die Weichteilspannung sowie die Beinlänge bestmöglich zu rekonstruieren und damit das Risiko eines Impingements und einer Luxation zu minimieren. Gegenwärtig liegen noch keine evidenzbasierten Empfehlungen hinsichtlich individuell angepasster Zielzonen für die Implantatpositionierung vor, die das spinopelvine Alignement und dessen Mobilität berücksichtigen. Hinsichtlich der Implantatwahl sollte bei Risikopatienten mit pathologischer spinopelviner Mobilität versucht werden, Prothesenköpfe mit einem Durchmesser von 36 mm einzusetzen. Bei Patienten mit stark erhöhtem Risiko für eine Luxation, z. B. bei einer Kombination aus steifer LWS, unbalanciertem spinopelvinem Übergang („flatback“) und relativ mobilen Hüften bzw. bei Patienten mit langstreckigen Spondylodesen oder Spondylodesen, die das Os sacrum einbeziehen, sollten tripolare Pfannensysteme in Betracht gezogen werden, um eine zusätzliche Luxationssicherheit zu erzielen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AI:

Ante-inclination

CSI:

Combined sagittal index

CT:

Computed tomography

HSS:

Hip-spine syndrome

LL:

Lumbar lordosis

MRI:

Magnetic resonance imaging

OA:

Osteoarthritis

PFA:

Pelvic-femoral angle

PI:

Pelvic incidence

PT:

Pelvic tilt

SS:

Sacral slope

THA:

Total hip arthroplasty

References

  1. Offierski CM, MacNab I (1983) Hip-spine syndrome. Spine 8:316–321

    CAS  PubMed  Google Scholar 

  2. Stefl M et al (2017) Spinopelvic mobility and acetabular component position for total hip arthroplasty. Bone Joint J 99-B:37–45

    CAS  PubMed  Google Scholar 

  3. Esposito CI et al (2016) Does degenerative lumbar spine disease influence femoroacetabular flexion in patients undergoing total hip arthroplasty? Clin Orthop Relat Res 474:1788–1797

    PubMed  PubMed Central  Google Scholar 

  4. Devin CJ, McCullough KA, Morris BJ, Yates AJ, Kang JD (2012) Hip-spine syndrome. J Am Acad Orthop Surg 20:434–442

    PubMed  Google Scholar 

  5. Malkani AL et al (2018) Total hip arthroplasty in patients with previous lumbar fusion surgery: are there more dislocations and revisions? J Arthroplasty 33:1189–1193

    PubMed  Google Scholar 

  6. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89:780–785

    PubMed  Google Scholar 

  7. Yoshihara H, Yoneoka D (2015) National trends in the surgical treatment for lumbar degenerative disc disease: United States, 2000 to 2009. Spine J 15:265–271

    PubMed  Google Scholar 

  8. Martin BI et al (2019) Trends in lumbar fusion procedure rates and associated hospital costs for degenerative spinal diseases in the United States, 2004 to 2015. Spine 44:369–376

    PubMed  Google Scholar 

  9. Esposito CI et al (2018) Total hip arthroplasty patients with fixed Spinopelvic alignment are at higher risk of hip dislocation. J Arthroplasty 33:1449–1454

    PubMed  Google Scholar 

  10. Phan D, Bederman SS, Schwarzkopf R (2015) The influence of sagittal spinal deformity on anteversion of the acetabular component in total hip arthroplasty. Bone Joint J 97-B:1017–1023

    CAS  PubMed  Google Scholar 

  11. Pierrepont J et al (2017) Variation in functional pelvic tilt in patients undergoing total hip arthroplasty. Bone Joint J 99-B:184–191

    CAS  PubMed  Google Scholar 

  12. Innmann MM, Merle C, Phan P, Beaule PE, Grammatopoulos G (2020) How can patients with mobile hips and stiff lumbar spines be identified prior to total hip arthroplasty? A prospective, diagnostic cohort study. J Arthroplasty. https://doi.org/10.1016/j.arth.2020.02.029

    Article  PubMed  Google Scholar 

  13. Weng W et al (2016) The effect of total hip arthroplasty on sagittal spinal-pelvic-leg alignment and low back pain in patients with severe hip osteoarthritis. Eur Spine J 25:3608–3614

    PubMed  Google Scholar 

  14. Grammatopoulos G et al (2018) Does lumbar arthrodesis compromise outcome of total hip arthroplasty? Hip Int 29:1120700018793373

    Google Scholar 

  15. An VVG, Phan K, Sivakumar BS, Mobbs RJ, Bruce WJ (2017) Prior lumbar spinal fusion is associated with an increased risk of dislocation and revision in total hip arthroplasty: a meta-analysis. J Arthroplasty 33:297–300

    PubMed  Google Scholar 

  16. Blizzard DJ, Nickel BT, Seyler TM, Bolognesi MP (2016) The impact of lumbar spine disease and deformity on total hip arthroplasty outcomes. Orthop Clin North Am 47:19–28

    PubMed  Google Scholar 

  17. Buckland AJ et al (2017) Dislocation of a primary total hip arthroplasty is more common in patients with a lumbar spinal fusion. Bone Joint J 99-B:585–591

    CAS  PubMed  Google Scholar 

  18. Sing DC et al (2016) Prior lumbar spinal arthrodesis increases risk of prosthetic-related complication in total hip arthroplasty. J Arthroplasty 31(e221):227–232

    PubMed  Google Scholar 

  19. Salib CG et al (2019) Lumbar fusion involving the sacrum increases dislocation risk in primary total hip arthroplasty. Bone Joint J 101-B:198–206

    CAS  PubMed  Google Scholar 

  20. Bedard NA et al (2016) Abnormally high dislocation rates of total hip arthroplasty after spinal deformity surgery. J Arthroplasty 31:2884–2885

    PubMed  Google Scholar 

  21. Grammatopoulos G et al (2019) 2018 Frank Stinchfield award: spinopelvic hypermobility is associated with an inferior outcome after THA: examining the effect of spinal arthrodesis. Clin Orthop Relat Res 477:310–321

    PubMed  Google Scholar 

  22. Heckmann N et al (2018) Late dislocation following total hip arthroplasty: spinopelvic imbalance as a causative factor. J Bone Joint Surg Am 100:1845–1853

    PubMed  Google Scholar 

  23. Gesundheitswesen, I.f.Q.u.T.i. (2019) Bundesauswertung zum Erfassungsjahr 2018 Hüftendoprothesenversorgung Qualitätsindikatoren und Kennzahlen. https://iqtig.org/downloads/auswertung/2018/hep/QSKH_HEP_2018_BUAW_V02_2019-07-23.pdf. Accessed 28 June 2020

  24. Soong M, Rubash HE, Macaulay W (2004) Dislocation after total hip arthroplasty. J Am Acad Orthop Surg 12:314–321

    PubMed  Google Scholar 

  25. Khan RJ, Smith CRL, Alakeson R, Fick DP, Wood D (2006) Operative and non-operative treatment options for dislocation of the hip following total hip arthroplasty. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005320.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  26. Parvizi J, Kim KI, Goldberg G, Mallo G, Hozack WJ (2006) Recurrent instability after total hip arthroplasty: beware of subtle component malpositioning. Clin Orthop Relat Res 447:60–65

    PubMed  Google Scholar 

  27. Gausden EB, Parhar HS, Popper JE, Sculco PK, Rush BNM (2018) Risk factors for early dislocation following primary elective total hip arthroplasty. J Arthroplasty 33:1567–1571e2

    PubMed  Google Scholar 

  28. Grimberg A, Jansson V, Liebs T, Melsheimer O, Steinbrück A (2019) Endoprothesenregister Deutschland (EPRD) Jahresbericht 2019. https://www.eprd.de/fileadmin/user_upload/Jahresbericht_2019_doppelseite_2.0.pdf. Accessed 28 June 2020

  29. Marchetti E et al (2011) Component impingement in total hip arthroplasty: frequency and risk factors. A continuous retrieval analysis series of 416 cup. Orthop Traumatol Surg Res 97:127–133

    CAS  PubMed  Google Scholar 

  30. Dorr LD, Callaghan JJ (2019) Death of the Lewinnek “Safe Zone”. J Arthroplasty 34:1–2

    PubMed  Google Scholar 

  31. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR (1978) Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am 60:217–220

    CAS  PubMed  Google Scholar 

  32. Dorr LD, Malik A, Dastane M, Wan Z (2009) Combined anteversion technique for total hip arthroplasty. Clin Orthop Relat Res 467:119–127

    PubMed  Google Scholar 

  33. Merle C et al (2013) Comparison of native anatomy with recommended safe component orientation in total hip arthroplasty for primary osteoarthritis. J Bone Joint Surg Am 95:e172

    PubMed  Google Scholar 

  34. Timperley AJ, Biau D, Chew D, Whitehouse SL (2016) Dislocation after total hip replacement—there is no such thing as a safe zone for socket placement with the posterior approach. Hip Int 26:121–127

    PubMed  Google Scholar 

  35. Grammatopoulos G et al (2015) The effect of orientation of the acetabular component on outcome following total hip arthroplasty with small diameter hard-on-soft bearings. Bone Joint J 97-B:164–172

    CAS  PubMed  Google Scholar 

  36. Abdel MP, von Roth P, Jennings MT, Hanssen AD, Pagnano MW (2015) What safe zone? The vast majority of dislocated THas are within the Lewinnek safe zone for acetabular component position. Clin Orthop Relat Res 474:386–391

    PubMed Central  Google Scholar 

  37. Esposito CI et al (2015) Cup position alone does not predict risk of dislocation after hip arthroplasty. J Arthroplasty 30:109–113

    PubMed  Google Scholar 

  38. Berliner JL et al (2018) What preoperative factors predict postoperative sitting pelvic position one year following total hip arthroplasty? Bone Joint J 100-B:1289–1296

    CAS  PubMed  Google Scholar 

  39. Tezuka T, Heckmann ND, Bodner RJ, Dorr LD (2019) Functional safe zone is superior to the Lewinnek safe zone for total hip arthroplasty: why the Lewinnek safe zone is not always predictive of stability. J Arthroplasty 34:3–8

    PubMed  Google Scholar 

  40. Luthringer TA, Vigdorchik JM (2019) A preoperative workup of a “hip-spine” total hip Arthroplasty patient: a simplified approach to a complex problem. J Arthroplasty 34:S57–S70

    PubMed  Google Scholar 

  41. Vigdorchik JM et al (2020) The majority of total hip arthroplasty patients with a stiff spine do not have an instrumented fusion. J Arthroplasty. https://doi.org/10.1016/j.arth.2020.01.031

    Article  PubMed  Google Scholar 

  42. Melhem E, Assi A, El Rachkidi R, Ghanem I (2016) EOS((R)) biplanar X‑ray imaging: concept, developments, benefits, and limitations. J Child Orthop 10:1–14

    PubMed  PubMed Central  Google Scholar 

  43. Illes T, Somoskeoy S (2012) The EOS imaging system and its uses in daily orthopaedic practice. Int Orthop 36:1325–1331

    PubMed  PubMed Central  Google Scholar 

  44. McKnight BM, Trasolini NA, Dorr LD (2019) Spinopelvic motion and impingement in total hip arthroplasty. J Arthroplasty 34:S53–S56

    PubMed  Google Scholar 

  45. Innmann M, Merle C, Phan P, Beaule P, Grammatopoulos G (2020) Are there differences in spinopelvic mobility between patients with end-stage hip osteoarthritis awaiting total hip arthroplasty and A control group?—A prospective diagnostic case-controlled cohort stud. https://www.britishhipsociety.com/uploaded/BHS2020FullDigitalProgramme.pdf. Accessed 28 June 2020

  46. Lazennec JY et al (2004) Hip-spine relationship: a radio-anatomical study for optimization in acetabular cup positioning. Surg Radiol Anat 26:136–144

    PubMed  Google Scholar 

  47. Kanawade V, Dorr LD, Wan Z (2014) Predictability of acetabular component angular change with postural shift from standing to sitting position. J Bone Joint Surg Am 96:978–986

    PubMed  Google Scholar 

  48. Behery OA, Vasquez-Montes D, Cizmic Z, Vigdorchik JM, Buckland AJ (2020) Can flexed-seated and single-leg standing radiographs be useful in preoperative evaluation of lumbar mobility in total hip arthroplasty? J Arthroplasty. https://doi.org/10.1016/j.arth.2020.03.035

    Article  PubMed  Google Scholar 

  49. Ike H et al (2018) Spine-pelvis-hip relationship in the functioning of a total hip replacement. J Bone Joint Surg Am 100:1606–1615

    PubMed  Google Scholar 

  50. Lum ZC, Coury JG, Cohen JL, Dorr LD (2018) The current knowledge on spinopelvic mobility. J Arthroplasty 33:291–296

    PubMed  Google Scholar 

  51. Malkani AL et al (2019) Does timing of primary total hip Arthroplasty prior to or after lumbar spine fusion have an effect on dislocation and revision rates? J Arthroplasty 34:907–911

    PubMed  Google Scholar 

  52. Bala A et al (2019) Timing of lumbar spinal fusion affects total hip arthroplasty outcomes. J Am Acad Orthop Surg Glob Res Rev 3:e133

    PubMed  PubMed Central  Google Scholar 

  53. Ike H, Bodner RJ, Lundergan W, Saigusa Y, Dorr LD (2020) The effects of pelvic incidence in the functional anatomy of the hip joint. J Bone Joint Surg Am 102:991–999

    PubMed  Google Scholar 

  54. Innmann MM et al (2018) Additive influence of hip offset and leg length reconstruction on postoperative improvement in clinical outcome after total hip arthroplasty. J Arthroplasty 33:156–161

    PubMed  Google Scholar 

  55. Malik A, Maheshwari A, Dorr LD (2007) Impingement with total hip replacement. J Bone Joint Surg Am 89:1832–1842

    PubMed  Google Scholar 

  56. Abdel MP (2019) Simplifying the hip-spine relationship for total hip arthroplasty: when do I use dual-mobility and why does it work? J Arthroplasty 34:S74–S75

    PubMed  Google Scholar 

  57. Nessler JM et al (2020) Use of dual mobility cups in patients undergoing primary total hip arthroplasty with prior lumbar spine fusion. Int Orthop 44(5):857–862. https://doi.org/10.1007/s00264-020-04507-y

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Merle M.Sc..

Ethics declarations

Conflict of interest

M.M. Innmann, J. Weishorn, P.E. Beaule, G. Grammatopoulos and C. Merle declare that they have no competing interests.

All studies performed were in accordance with the ethical standards indicated in each case. Additional written informed consent was obtained from all individual participants or their legal representatives for whom identifying information is included in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Innmann, M.M., Weishorn, J., Beaule, P.E. et al. Pathologic spinopelvic balance in patients with hip osteoarthritis. Orthopäde 49, 860–869 (2020). https://doi.org/10.1007/s00132-020-03981-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-020-03981-x

Keywords

Schlüsselwörter

Navigation