Skip to main content

Advertisement

Log in

Long-term results of custom-made femoral stems

Langzeitergebnisse zu maßgefertigten Femurschäften

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Abstract

Background

The progress of 3D imaging and manufacturing of implants has made it possible to achieve a custom-made concept in THA. The custom-made cementless femoral stem provides optimal implant stability combined with restoration of the native hip mechanics.

Objective

The purpose of this study was to evaluate the long-term survivorship of custom-made hip femoral stems in two populations of patients undergoing THA: patients under 50 years old (young patients group) and patients with high-grade developmental dysplasia of the hip (DDH group).

Methods

A series of 232 primary custom-made cementless THA stems were retrospectively evaluated in patients less than 50 years old at the time of surgery and at follow-up after an average of 20 years. A second series of 26 custom-made cementless stem THAs for late DDH (21 patients) including only Crowe grade III and grade IV were also retrospectively evaluated with an average follow-up of 16 years. The clinical and radiological evaluations were performed preoperatively and at yearly intervals.

Results

For the young patient group, the follow-up ranged from 14 to 27 years. The HHS and the Merle D’Aubigne-Postel score significantly improved from preoperatively to a mean of 94.1 (range 48–100) and 15.9 (range 9–18), respectively. Taking stem revision for aseptic loosening as an endpoint, survivorship was 96.8% at 20 years (95% confidence interval, CI 95.1–98.5). For the DDH group, the follow-up ranged from 10 to 22 years. The mean HHS increased significantly from preoperative 49 ± 22 points to the most recent follow-up examination with 86 13 points and survivorship was 96.1% (95% CI, 92.7–99.9).

Conclusion

Custom-made femoral stems provide good functional outcome and long-term survivorship in two specific populations of patients undergoing THAs: patients under 50 years old with high expectations and patients with high-grade DDH.

Zusammenfassung

Hintergrund

Der Fortschritt der 3‑D-Bildgebung und der Herstellung von Implantaten hat es ermöglicht, ein maßgeschneidertes Konzept in der THA zu erreichen. Der maßgefertigte zementfreie Femurschaft bietet optimale Implantatstabilität bei gleichzeitiger Wiederherstellung der nativen Hüftmechanik.

Ziel

Das Ziel dieser Studie war es, die Langzeitüberlebensfähigkeit maßgefertigter Femurschäfte der Hüfte bei zwei Patientenpopulationen zu untersuchen, die sich einer Hüfttotalendoprothese (TEP) unterziehen: Patienten unter 50 Jahren (Gruppe junger Patienten) und Patienten mit hochgradiger Entwicklungsdysplasie der Hüfte (DDH-Gruppe).

Methoden

Eine Serie von 232 primären zementfreien maßgefertigten TEP-Schäften wurde bei Patienten unter 50 Jahren retrospektiv zum Zeitpunkt der Operation und nach durchschnittlich 20 Jahren Follow-up ausgewertet. Eine zweite Serie von 26 maßgefertigten zementfreien THA-Schäften für späte DDH (21 Patienten), darunter nur Crowe-Grad III und IV, wurde ebenfalls retrospektiv mit einem durchschnittlichen Follow-up von 16 Jahren ausgewertet. Die klinischen und radiologischen Auswertungen wurden präoperativ und in jährlichen Abständen durchgeführt.

Ergebnisse

Bei der jungen Patientengruppe reichte die Nachbeobachtung von 14 bis 27 Jahren. Der HHS- und der Merle-D’Aubigne-Postel-Score verbesserten sich signifikant von präoperativ auf einen Mittelwert von 94,1 (Range: 48–100) bzw. 15,9 (Range: 9–18). Nimmt man die Schaftrevision aufgrund aseptischer Lockerung als Endpunkt, so betrug die Überlebensrate nach 20 Jahren 96,8 % (95 % Konfidenzintervall, [KI] 95,1–98,5). Bei der DDH-Gruppe reichte die Nachbeobachtung von 10 bis 22 Jahren. Der mittlere HHS stieg signifikant von präoperativ 49 ± 22 Punkten bis zur letzten Nachuntersuchung mit 86 ± 13 Punkten, und die Überlebensrate betrug 96,1 % (95 % KI 92,7–99,9).

Schlussfolgerung

Maßfertigte Femurschäfte bieten gute funktionelle Ergebnisse und langfristige Überlebenschancen bei zwei spezifischen Patientenpopulationen, die sich einer TEP unterziehen: bei Patienten unter 50 Jahren mit hohen Erwartungen und bei Patienten mit hochgradiger DDH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AP:

Anteroposterior

AVN:

Avascular necrosis

BMI:

Body mass index

CT:

Computed tomography

DDH:

Developmental dysplasia of the hip

FA:

Femoral anteversion

FO:

Femoral offset

GTO:

Greater trochanteric osteotomy

HHS:

Harris hip score

OA:

Osteoarthritis

THA:

Total hip arthroplasty

References

  1. Amstutz HC, Sakai DN (1975) Total joint replacement for ankylosed hips. Indications , technique, and preliminary results. J Bone Joint Surg Am 57:619–625

    Article  CAS  Google Scholar 

  2. Argenson J‑N, Ryembault E, Flecher X et al (2005) Three-dimensional anatomy of the hip in osteoarthritis after developmental dysplasia. J Bone Joint Surg Br 87:1192–1196. https://doi.org/10.1302/0301-620X.87B9.15928

    Article  PubMed  Google Scholar 

  3. Asayama I, Chamnongkich S, Simpson KJ et al (2005) Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty. J Arthroplasty 20:414–420. https://doi.org/10.1016/j.arth.2004.01.016

    Article  PubMed  Google Scholar 

  4. Beaulé PE, Dorey FJ, Hoke R et al (2006) The value of patient activity level in the outcome of total hip arthroplasty. J Arthroplasty 21:547–552. https://doi.org/10.1016/j.arth.2005.09.004

    Article  PubMed  Google Scholar 

  5. Binazzi R (2015) Two-stage progressive femoral lowering followed by cementless total hip arthroplasty for treating Crowe IV-Hartofilakidis type 3 developmental dysplasia of the hip. J Arthroplasty 30:790–796. https://doi.org/10.1016/j.arth.2014.12.019

    Article  PubMed  Google Scholar 

  6. Bugbee WD, Culpepper WJ, Engh CA, Engh CA (1997) Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement. J Bone Joint Surg Am 79:1007–1012. https://doi.org/10.2106/00004623-199707000-00006

    Article  CAS  PubMed  Google Scholar 

  7. Capello WN, D’Antonio JA, Feinberg JR, Manley MT (2003) Ten-year results with hydroxyapatite-coated total hip femoral components in patients less than fifty years old. A concise follow-up of a previous report. J Bone Joint Surg Am 85:885–889. https://doi.org/10.2106/00004623-200305000-00017

    Article  PubMed  Google Scholar 

  8. Charnley J, Feagin JA (1973) Low-friction arthroplasty in congenital subluxation of the hip. Clin Orthop. https://doi.org/10.1097/00003086-197303000-00015

    Article  PubMed  Google Scholar 

  9. Crowe JF, Mani VJ, Ranawat CS (1979) Total hip replacement in congenital dislocation and dysplasia of the hip. J Bone Joint Surg Am 61:15–23

    Article  CAS  Google Scholar 

  10. D’aubigne RM, Postel M (1954) Functional results of hip arthroplasty with acrylic prosthesis. J Bone Joint Surg Am 36-A:451–475

    Article  Google Scholar 

  11. De Kam DCJ, Busch VJJF, Veth RPH, Schreurs BW (2011) Total hip arthroplasties in young patients under 50 years: limited evidence for current trends. A descriptive literature review. Hip Int 21:518–525. https://doi.org/10.5301/HIP.2011.8641

    Article  PubMed  Google Scholar 

  12. Del Piccolo N, Carubbi C, Mazzotta A et al (2016) Return to sports activity with short stems or standard stems in total hip arthroplasty in patients less than 50 years old. Hip Int 26(Suppl 1):48–51. https://doi.org/10.5301/hipint.5000404

    Article  PubMed  Google Scholar 

  13. Engh CA, Bobyn JD (1988) The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop 231:7–28

  14. Eskelinen A, Remes V, Helenius I et al (2005) Total hip arthroplasty for primary osteoarthrosis in younger patients in the Finnish arthroplasty register. 4,661 primary replacements followed for 0–22 years. Acta Orthop 76:28–41. https://doi.org/10.1080/00016470510030292

    Article  PubMed  Google Scholar 

  15. Eskelinen A, Remes V, Ylinen P et al (2009) Cementless total hip arthroplasty in patients with severely dysplastic hips and a previous Schanz osteotomy of the femur: techniques, pitfalls, and long-term outcome. Acta Orthop 80:263–269. https://doi.org/10.3109/17453670902967273

    Article  PubMed  PubMed Central  Google Scholar 

  16. Flecher X, Argenson JN, Parratte S et al (2006) Custom cementless stem for osteoarthritis following developmental hip dysplasia. Rev Chir Orthop Reparatrice Appar Mot 92:332–342. https://doi.org/10.1016/s0035-1040(06)75763-4

    Article  CAS  PubMed  Google Scholar 

  17. Flecher X, Parratte S, Aubaniac J‑M, Argenson J‑N (2007) Three-dimensional custom-designed cementless femoral stem for osteoarthritis secondary to congenital dislocation of the hip. J Bone Joint Surg Br 89:1586–1591. https://doi.org/10.1302/0301-620X.89B12.19252

    Article  CAS  PubMed  Google Scholar 

  18. Götze C, Steens W, Vieth V et al (2002) Primary stability in cementless femoral stems: custom-made versus conventional femoral prosthesis. Clin Biomech 17:267–273. https://doi.org/10.1016/s0268-0033(02)00012-8

    Article  Google Scholar 

  19. Gruen TA, McNeice GM, Amstutz HC (1979) „Modes of failure“ of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop 141:17–27

  20. Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 51:737–755

    Article  CAS  Google Scholar 

  21. Hartofilakidis G, Karachalios T, Georgiades G, Kourlaba G (2011) Total hip arthroplasty in patients with high dislocation: a concise follow-up, at a minimum of fifteen years, of previous reports. J Bone Joint Surg Am 93:1614–1618. https://doi.org/10.2106/JBJS.J.00875

    Article  PubMed  Google Scholar 

  22. Kwon Y‑M, Khormaee S, Liow MHL et al (2016) Asymptomatic pseudotumors in patients with taper corrosion of a dual-taper modular femoral stem: MARS-MRI and metal Ion study. J Bone Joint Surg Am 98:1735–1740. https://doi.org/10.2106/JBJS.15.01325

    Article  PubMed  Google Scholar 

  23. Lee SJ, Yoo JJ, Kim HJ (2017) Cementless total hip arthroplasty involving trochanteric osteotomy without subtrochanteric shortening for high hip dislocation. Clin Orthop Surg 9:19–28. https://doi.org/10.4055/cios.2017.9.1.19

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maar DC, Mont MA, Krackow KA, Hungerford DS (1992) Long-term (twelve to eighteen-year) follow-up of cemented total hip replacements in patients who were less than fifty years old. A follow-up note. J Bone Joint Surg Am 74:307–308

    Article  CAS  Google Scholar 

  25. Massin P, Geais L, Astoin E et al (2000) The anatomic basis for the concept of lateralized femoral stems: a frontal plane radiographic study of the proximal femur. J Arthroplasty 15:93–101

    Article  CAS  Google Scholar 

  26. McGrory BJ, Morrey BF, Cahalan TD et al (1995) Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg Br 77:865–869

    Article  CAS  Google Scholar 

  27. Mu W, Yang D, Xu B et al (2016) Midterm outcome of cementless total hip arthroplasty in Crowe IV-Hartofilakidis type III developmental dysplasia of the hip. J Arthroplasty 31:668–675. https://doi.org/10.1016/j.arth.2015.10.011

    Article  PubMed  Google Scholar 

  28. Muirhead-Allwood SK, Sandiford N, Skinner JA et al (2010) Uncemented custom computer-assisted design and manufacture of hydroxyapatite-coated femoral components: survival at 10 to 17 years. J Bone Joint Surg Br 92:1079–1084. https://doi.org/10.1302/0301-620X.92B8.23123

    Article  CAS  PubMed  Google Scholar 

  29. Mutlu T, Çiçek H, Yalçin N et al (2016) How do different designs of femoral stem affect total hip arthroplasty applied to Crowe type III and type IV dysplastic hips. Hip Int 26:374–379. https://doi.org/10.5301/hipint.5000360

    Article  PubMed  Google Scholar 

  30. Ollivier M, Abdel MP, Krych AJ et al (2016) Long-term results of total hip arthroplasty with shortening subtrochanteric osteotomy in Crowe IV developmental dysplasia. J Arthroplasty 31:1756–1760. https://doi.org/10.1016/j.arth.2016.01.049

    Article  PubMed  Google Scholar 

  31. Paavilainen T, Hoikka V, Paavolainen P (1993) Cementless total hip arthroplasty for congenitally dislocated or dysplastic hips. Technique for replacement with a straight femoral component. Clin Orthop 297:71–81

  32. Sariali E, Klouche S, Mamoudy P (2014) Ceramic-on-ceramic total hip arthroplasty: is squeaking related to an inaccurate three-dimensional hip anatomy reconstruction? Orthop Traumatol Surg Res 100:437–440. https://doi.org/10.1016/j.otsr.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  33. Sariali E, Klouche S, Mouttet A, Pascal-Moussellard H (2014) The effect of femoral offset modification on gait after total hip arthroplasty. Acta Orthop 85:123–127. https://doi.org/10.3109/17453674.2014.889980

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sariali E, Mouttet A, Pasquier G, Durante E (2009) Three-dimensional hip anatomy in osteoarthritis. Analysis of the femoral offset. J Arthroplasty 24:990–997. https://doi.org/10.1016/j.arth.2008.04.031

    Article  PubMed  Google Scholar 

  35. Swarup I, Lee Y, Christoph EI et al (2015) Implant survival and patient-reported outcomes after total hip arthroplasty in young patients with juvenile idiopathic arthritis. J Arthroplasty 30:398–402. https://doi.org/10.1016/j.arth.2014.09.018

    Article  PubMed  Google Scholar 

  36. Tsiampas DT, Pakos EE, Georgiadis GC, Xenakis TA (2016) Custom-made femoral implants in total hip arthroplasty due to congenital disease of the hip: a review. Hip Int 26:209–214. https://doi.org/10.5301/hipint.5000355

    Article  PubMed  Google Scholar 

  37. Wang D, Li L‑L, Wang H‑Y et al (2017) Long-term results of cementless total hip arthroplasty with subtrochanteric shortening osteotomy in Crowe type IV developmental dysplasia. J Arthroplasty 32:1211–1219. https://doi.org/10.1016/j.arth.2016.11.005

    Article  PubMed  Google Scholar 

  38. Yoon PW, Kim JI, Kim DO et al (2013) Cementless total hip arthroplasty for patients with Crowe type III or IV developmental dysplasia of the hip: two-stage total hip arthroplasty following skeletal traction after soft tissue release for irreducible hips. Clin Orthop Surg 5:167–173. https://doi.org/10.4055/cios.2013.5.3.167

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zenz P, Pospisil C, Fertschak W, Schwägerl W (1995) 10 years of cementless implantation of total hip endoprosthesis using Zweymüller’s stem. Z Orthop Ihre Grenzgeb 133:558–561. https://doi.org/10.1055/s-2008-1039939

    Article  CAS  PubMed  Google Scholar 

  40. Zhu J, Shen C, Chen X et al (2015) Total hip arthroplasty with a non-modular conical stem and transverse subtrochanteric osteotomy in treatment of high dislocated hips. J Arthroplasty 30:611–614. https://doi.org/10.1016/j.arth.2014.11.002

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Noel Argenson MD, PhD.

Ethics declarations

Conflict of interest

J.-N. Argenson is a consultant for Zimmer and Symbios. M. Ollivier is a consultant for Stryker and New-Clip Technics. X. Flecher is a consultant for Zimmer and Symbios. C. Jacquet, C. Pioger and M. Fabre-Aubrespy declare that they have no competing interests.

Ethical standards

All studies performed were in accordance with the ethical standards indicated in each case. The local ethics committee approved the study protocol prior to the investigation.

Additional information

Investigations performed at Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopedics and Traumatology, Marseille, France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacquet, C., Flecher, X., Pioger, C. et al. Long-term results of custom-made femoral stems. Orthopäde 49, 408–416 (2020). https://doi.org/10.1007/s00132-020-03901-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-020-03901-z

Keywords

Schlüsselwörter

Navigation