Skip to main content

Advertisement

Log in

Auswirkungen von Kniebeschwerden auf die posturale Kontrolle unter Ausschluss der Muskulatur des kraniomandibulären Systems

Effects of knee pain on postural control excluding the musculature of the craniomandibular system

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Kniebeschwerden können die posturale Kontrolle, neben Änderungen der anatomischen Kniegelenksstrukturen, mit beeinflussen.

Zielsetzung

Da der Einfluss von Dysbalancen im kraniomandibulären System auf die posturale Kontrolle vielfach nachgewiesen wurde, ist es das Ziel der vorliegenden Arbeit, den Einfluss variierender Kniediagnosen auf die posturale Kontrolle unter Ausschluss von okklusalen Informationen mittels symmetrischer Blockade durch Watterollen zu untersuchen.

Material und Methoden

An dieser Studie nahmen 115 (74 m/41 w) Patienten im Alter von 18–75 Jahren mit einem durchschnittlichen BMI von 25,13 ± 3,66 kg/m2 freiwillig teil, darunter 34 Patienten (26 m/8 w) mit Kreuzbandverletzungen, 26 (16 m/10 w) mit Meniskusläsionen, 24 (13 m/11 w) mit Arthrosen, 21 (11 m/10 w) mit Patellaschmerzen und 10 (8 m/2 w) mit sonstigen schmerzhaften Knieerkrankungen. Die posturale Kontrolle wurde mit einer Druckmessplatte erhoben, der Schweregrad der Erkrankung mit dem Knee injury and Osteoarthritis Outcome-Fragebogen erfasst und die Okklusion beidseits mit Watterollen im Prämolarenbereich gesperrt.

Ergebnisse

Kniearthrotische Patienten stehen mit steigendem Lebensalter vermehrt auf dem Rückfuß. Bei Patellaerkrankten korrelierte eine vermehrte Vorfußbelastung mit einem steigenden BMI. Eine Belastungszunahme des Vorfußes der unverletzten Knieseite resultiert bei Patellaerkrankten sowohl in einer Abnahme der Lebensqualität als auch dem täglichen Aktivitätsniveau.

Diskussion

Die prozentuale Belastung der Fußzonen differiert bei unilateralen Knieverletzungen (insbesondere der Vergleich der verletzten mit der unverletzten Knieseite). Alter, BMI oder Geschlecht sind Einflussfaktoren. Da unterschiedliche Korrelationen bzw. Auswirkungen in den Subgruppen der Knieverletzungen hervorgerufen werden, sollte eine verletzungsspezifische Analyse durchgeführt werden. Diese Auswirkungen sind auch in der subjektiven Beurteilung der Lebensqualität erkennbar.

Abstract

Background

Knee pain can influence postural control in addition to changes in the anatomical structure of the knee joints.

Objective

Because the influence of imbalances in the craniomandibular system has been proven multiple times, it is the aim of the present work to investigate the influence of various knee diagnoses on postural control excluding occlusal information by means of symmetrical packing using cotton rolls.

Materials and methods

One hundred and fifteen patients (74 male/41 female) aged 18–75 years with an average BMI of 25.13 ± 3.66 kg/m2 took part in the study, among them 34 patients (26 male/8 female) with cruciate ligament injury, 26 (16 male/10 female) with meniscal lesions, 24 (13 male/11 female) with arthrosis, 21 (11 male/10 female) with patellar pain, and 10 (8 male/2 female) with other painful knee complaints. Postural control was increased using a force platform, the degree of severity of the disorder was recorded using the “Knee Injury and Osteoarthritis Outcome” questionnaire, and the occlusion packed on both sides with cotton rolls in the premolar area.

Results

With increasing age, patients with knee arthrosis are more likely to stand on the hindfoot. In those with patellar disorder, increased weight-bearing on the forefoot correlates with increasing BMI. An increase in weight-bearing on the forefoot on the side of the uninjured knee in people with patellar disorder results not only in a reduction in quality of life but also level of daily activity.

Discussion

The percentage weight-bearing on the zones of the feet differs in unilateral knee injuries (in particular, comparison of the side with the knee injury and the uninjured side). Age, BMI or gender are influencing factors. Because various correlations and/or effects in the subgroups of knee injuries are generated, an injury-specific analysis should be carried out. These effects are also identifiable in the subjective assessment of quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Abbreviations

ACL:

Vorderes Kreuzband

ADL :

Tägliches Aktivitätsniveau

BMI :

Body-Mass-Index

CoP:

„Center of pressure“

ICRS :

International Cartilage Repair Society

KOOS :

Knee Injury Osteoarthritis Outcome Score

PFP :

Hoffa-Fettkörper

QoL :

Lebensqualität

SEBT :

Star-Excursion-Balance-Test

Literatur

  1. Adkin AL, Frank JS, Carpenter MG et al (2000) Postural control is scaled to level of postural threat. Gait Posture 12:87–93

    CAS  PubMed  Google Scholar 

  2. Afschrift M, De Groote F, Verschueren S et al (2018) Increased sensory noise and not muscle weakness explains changes in non-stepping postural responses following stance perturbations in healthy elderly. Gait Posture 59:122–127

    PubMed  Google Scholar 

  3. Statista (2008) Die häufigsten Krankheiten von Berufstätigen in Deutschland 2008 (in Prozent). https://de.statista.com/statistik/daten/studie/36417/umfrage/berufstaetige-in-deutschland-die-haeufigsten-krankheiten/. Zugegriffen: 29. Apr. 2019

    Google Scholar 

  4. Statista (2016) Anteil der häufigsten Krankheitsarten in Deutschland in den Jahren 2012 bis 2016. https://de.statista.com/statistik/daten/studie/187969/umfrage/anteil-der-haeufigsten-krankheitsarten-in-deutschland/. Zugegriffen: 29. Apr. 2019

    Google Scholar 

  5. Statista (2016) Anzahl der Implantationen künstlicher Kniegelenke in deutschen Krankenhäusern in den Jahren 2005 bis 2016. https://de.statista.com/statistik/daten/studie/785084/umfrage/implantationen-kuenstlicher-kniegelenke-in-deutschen-krankenhaeusern/. Zugegriffen: 29. Apr. 2019

    Google Scholar 

  6. Statista (2019) Anzahl der Knieoperationen in ausgewählten Ländern im Jahr 2009 (je 100.000 Einwohner). https://de.statista.com/statistik/daten/studie/214307/umfrage/anzahl-der-knie-operationen-pro-100000-einwohner/. Zugegriffen: 29. Apr. 2019

    Google Scholar 

  7. Statista (2016) Top 10 Diagnosen für Verordnungen von Krankengymnastik im Rahmen der AOK im Jahr 2016. https://de.statista.com/statistik/daten/studie/701816/umfrage/top-10-diagnosen-fuer-verordnungen-von-krankengymnastik/. Zugegriffen: 29. Apr. 2019

    Google Scholar 

  8. Statistisches Bundesamt (2017) 206 800 Rehabilitationen wegen Knie- oder Hüftgelenksarthrose. https://www.destatis.de/DE/Presse/Pressemitteilungen/Zahl-der-Woche/2017/PD17_002_p002.html. Zugegriffen: 29. Apr. 2019

    Google Scholar 

  9. Aumüller G, Aust G, Engele J et al (2014) Duale Reihe Anatomie. Thieme, Stuttgart

    Google Scholar 

  10. Ayeni OR, Chahal M, Tran MN et al (2012) Pivot shift as an outcome measure for ACL reconstruction: a systematic review. Knee Surg Sports Traumatol Arthrosc 20:767–777

    PubMed  Google Scholar 

  11. Baldini A, Nota A, Assi V et al (2013) Intersession reliability of a posturo-stabilometric test, using a force platform. J Electromyogr Kinesiol 23:1474–1479

    PubMed  Google Scholar 

  12. Baldini A, Nota A, Cravino G et al (2013) Influence of vision and dental occlusion on body posture in pilots. Aviat Space Environ Med 84:823–827

    PubMed  Google Scholar 

  13. Baldini A, Nota A, Tripodi D et al (2013) Evaluation of the correlation between dental occlusion and posture using a force platform. Clinics 68:45–49

    PubMed  PubMed Central  Google Scholar 

  14. Baltich J, Von Tscharner V, Nigg BM (2015) Degradation of postural control with aging. Proc Inst Mech Eng [H] 229:638–644

    Google Scholar 

  15. Bellamy N, Buchanan WW, Goldsmith CH et al (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15:1833–1840

    CAS  PubMed  Google Scholar 

  16. Biant LC, Mcnicholas MJ, Sprowson AP et al (2015) The surgical management of symptomatic articular cartilage defects of the knee: Consensus statements from United Kingdom knee surgeons. Knee 22:446–449

    PubMed  Google Scholar 

  17. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69

    Google Scholar 

  18. Collins NJ, Misra D, Felson DT et al (2011) Measures of knee function. Arthritis Care Res 63(Suppl 11):208–228

    Google Scholar 

  19. Collins NJ, Prinsen CA, Christensen R et al (2016) Knee Injury and Osteoarthritis Outcome Score (KOOS): systematic review and meta-analysis of measurement properties. Osteoarthr Cartil 24:1317–1329

    CAS  Google Scholar 

  20. Dye SF, Vaupel GL, Dye CC (1998) Conscious neurosensory mapping of the internal structures of the human knee without intraarticular anesthesia. Am J Sports Med 26:773–777

    CAS  PubMed  Google Scholar 

  21. Engelhart L, Nelson L, Lewis S et al (2012) Validation of the knee injury and osteoarthritis outcome score subscales for patients with articular cartilage lesions of the knee. Am J Sports Med 40:2264–2272

    PubMed  Google Scholar 

  22. Faltstrom A, Hagglund M, Kvist J (2017) Functional performance among active female soccer players after unilateral primary anterior cruciate ligament reconstruction compared with knee-healthy controls. Am J Sports Med 45:377–385

    PubMed  Google Scholar 

  23. Gangloff P, Louis JP, Perrin PP (2000) Dental occlusion modifies gaze and posture stabilization in human subjects. Neurosci Lett 293:203–206

    CAS  PubMed  Google Scholar 

  24. Goble DJ, Coxon JP, Wenderoth N et al (2009) Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neurosci Biobehav Rev 33:271–278

    PubMed  Google Scholar 

  25. Gribble PA, Hertel J, Plisky P (2012) Using the star excursion balance test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. J Athl Train 47:339–357

    PubMed  PubMed Central  Google Scholar 

  26. Hatfield GL, Morrison A, Wenman M et al (2016) Clinical tests of standing balance in the knee osteoarthritis population: systematic review and meta-analysis. Phys Ther 96:324–337

    PubMed  Google Scholar 

  27. Hawker GA, Stewart L, French MR et al (2008) Understanding the pain experience in hip and knee osteoarthritis—an OARSI/OMERACT initiative. Osteoarthr Cartil 16:415–422

    CAS  Google Scholar 

  28. Hinman RS, Bennell KL, Metcalf BR et al (2002) Balance impairments in individuals with symptomatic knee osteoarthritis: a comparison with matched controls using clinical tests. Rheumatology 41:1388–1394

    CAS  PubMed  Google Scholar 

  29. Hoch JM, Sinnott CW, Robinson KP et al (2017) The examination of patient-reported outcomes and postural control measures in patients with and without a history of ACL reconstruction: a case control study. J Sport Rehabil 27(2):170–176. https://doi.org/10.1123/jsr.2016-0105

    Article  Google Scholar 

  30. Horak FB (1987) Clinical measurement of postural control in adults. Phys Ther 67:1881–1885

    CAS  PubMed  Google Scholar 

  31. Horlings CG, Kung UM, Van Engelen BG et al (2009) Balance control in patients with distal versus proximal muscle weakness. Neuroscience 164:1876–1886

    CAS  PubMed  Google Scholar 

  32. Imagama S, Ando K, Kobayashi K et al (2019) Impact of comorbidity rates of lumbar spondylosis, knee osteoarthritis, and osteoporosis on physical QOL and risk factors for poor physical QOL in middle-aged and elderly people. Mod Rheumatol. https://doi.org/10.1080/14397595.2019.1601839

    Article  PubMed  Google Scholar 

  33. Izquierdo-Renau M, Perez-Soriano P, Ribas-Garcia V et al (2017) Intra and intersession repeatability and reliability of the S‑Plate(R) pressure platform. Gait Posture 52:224–226

    PubMed  Google Scholar 

  34. Jerosch J, Prymka M (1997) Proprioceptive deficits of the knee joint after rupture of the medial meniscus. Unfallchirurg 100:444–448

    CAS  PubMed  Google Scholar 

  35. Julia-Sanchez S, Alvarez-Herms J, Gatterer H et al (2015) Dental occlusion influences the standing balance on an unstable platform. Motor control 19:341–354

    PubMed  Google Scholar 

  36. Julia-Sanchez S, Alvarez-Herms J, Gatterer H et al (2016) The influence of dental occlusion on the body balance in unstable platform increases after high intensity exercise. Neurosci Lett 617:116–121

    CAS  PubMed  Google Scholar 

  37. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ku PX, Abu Osman NA, Yusof A et al (2012) Biomechanical evaluation of the relationship between postural control and body mass index. J Biomech 45:1638–1642

    CAS  PubMed  Google Scholar 

  39. Levinger P, Menz HB, Wee E et al (2011) Physiological risk factors for falls in people with knee osteoarthritis before and early after knee replacement surgery. Knee Surg Sports Traumatol Arthrosc 19:1082–1089

    PubMed  Google Scholar 

  40. Malfait AM, Schnitzer TJ (2013) Towards a mechanism-based approach to pain management in osteoarthritis. Nat Rev Rheumatol 9:654–664

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Malliou P, Gioftsidou A, Pafis G et al (2012) Proprioception and functional deficits of partial meniscectomized knees. Eur J Phys Rehabil Med 48:231–236

    CAS  PubMed  Google Scholar 

  42. Maly MR, Cott CA (2009) Being careful: a grounded theory of emergent chronic knee problems. Arthritis Rheum 61:937–943

    PubMed  Google Scholar 

  43. Messner K, Gao J (1998) The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anatomy 193(2):161–178

    CAS  Google Scholar 

  44. Milani RS, De Periere DD, Lapeyre L et al (2000) Relationship between dental occlusion and posture. Cranio 18:127–134

    CAS  PubMed  Google Scholar 

  45. Negahban H, Mazaheri M, Kingma I et al (2014) A systematic review of postural control during single-leg stance in patients with untreated anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 22:1491–1504

    PubMed  Google Scholar 

  46. Neogi T (2013) The epidemiology and impact of pain in osteoarthritis. Osteoarthr Cartil 21:1145–1153

    CAS  Google Scholar 

  47. Niethard FU, Pfeil J, Rehbein P (2014) Duale Reihe Orthopädie und Unfallchirurgie. Thieme, Stuttgart

    Google Scholar 

  48. Nobili A, Adversi R (1996) Relationship between posture and occlusion: a clinical and experimental investigation. Cranio 14:274–285

    CAS  PubMed  Google Scholar 

  49. Ozcan Kahraman B, Kahraman T, Kalemci O et al (2018) Gender differences in postural control in people with nonspecific chronic low back pain. Gait Posture 64:147–151

    PubMed  Google Scholar 

  50. Palm HG, Laufer C, Von Lubken F et al (2010) Do meniscus injuries affect postural stability? Orthopäde 39:486–494

    PubMed  Google Scholar 

  51. Patrick DL, Burke LB, Powers JH et al (2007) Patient-reported outcomes to support medical product labeling claims: FDA perspective. Value Health 10(Suppl 2):125–137

    Google Scholar 

  52. Perinetti G, Marsi L, Castaldo A et al (2012) Is postural platform suited to study correlations between the masticatory system and body posture? A study of repeatability and a meta-analysis of reported variations. Prog Orthod 13:273–280

    PubMed  Google Scholar 

  53. Prins M (2006) The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. Aust J Physiother 52:66

    PubMed  Google Scholar 

  54. Puszczalowska-Lizis E, Bujas P, Jandzis S et al (2018) Inter-gender differences of balance indicators in persons 60–90 years of age. Clin Interv Aging 13:903–912

    PubMed  PubMed Central  Google Scholar 

  55. Raschner C, Hildebrandt C, Mohr J et al (2017) Sex differences in balance among alpine ski racers: cross-sectional Age comparisons. Percept Mot Skills 124:1134–1150

    PubMed  Google Scholar 

  56. Roos EM (2012) The 2012 User’s Guide to: Knee injury and Osteoarthritis Outcome Score KOOS, S 1–5

    Google Scholar 

  57. Roos EM, Roos HP, Lohmander LS et al (1998) Knee Injury and Osteoarthritis Outcome Score (KOOS)—development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96

    CAS  PubMed  Google Scholar 

  58. Scharnweber B, Adjami F, Schuster G et al (2017) Influence of dental occlusion on postural control and plantar pressure distribution. Cranio 35:358–366

    PubMed  Google Scholar 

  59. Shaffer SW, Harrison AL (2007) Aging of the somatosensory system: a translational perspective. Phys Ther 87:193–207

    PubMed  Google Scholar 

  60. Shiozawa S, Hirata RP, Jeppesen JB et al (2015) Impaired anticipatory postural adjustments due to experimental infrapatellar fat pad pain. Eur J Pain 19:1362–1371

    CAS  PubMed  Google Scholar 

  61. Steffen K, Nilstad A, Krosshaug T et al (2017) No association between static and dynamic postural control and ACL injury risk among female elite handball and football players: a prospective study of 838 players. Br J Sports Med 51:253–259

    PubMed  Google Scholar 

  62. Stoller DW, Martin C, Crues JV 3rd et al (1987) Meniscal tears: pathologic correlation with MR imaging. Radiology 163:731–735

    CAS  PubMed  Google Scholar 

  63. Taglietti M, Dela Bela LF, Dias JM et al (2017) Postural sway, balance confidence, and fear of falling in women with knee osteoarthritis in comparison to matched controls. PM R 9(8):774–780. https://doi.org/10.1016/j.pmrj.2016.11.003

    Article  PubMed  Google Scholar 

  64. Tardieu C, Dumitrescu M, Giraudeau A et al (2009) Dental occlusion and postural control in adults. Neurosci Lett 450:221–224

    CAS  PubMed  Google Scholar 

  65. Turcot K, Sagawa Y Jr., Hoffmeyer P et al (2015) Multi-joint postural behavior in patients with knee osteoarthritis. Knee 22:517–521

    PubMed  Google Scholar 

  66. Vallotton JA, Meuli RA, Leyvraz PF et al (1995) Comparison between magnetic resonance imaging and arthroscopy in the diagnosis of patellar cartilage lesions: a prospective study. Knee Surg Sports Traumatol Arthrosc 3:157–162

    CAS  PubMed  Google Scholar 

  67. Wülker N, Kluba T, Roetman B, Rudert M (2015) Taschenlehrbuch Orthopädie und Unfallchirurgie. Thieme, Stuttgart

    Google Scholar 

  68. Yamazaki J, Muneta T, Ju YJ et al (2010) Differences in kinematics of single leg squatting between anterior cruciate ligament-injured patients and healthy controls. Knee Surg Sports Traumatol Arthrosc 18:56–63

    CAS  PubMed  Google Scholar 

  69. Zult T, Gokeler A, Van Raay JJ et al (2017) An anterior cruciate ligament injury does not affect the neuromuscular function of the non-injured leg except for dynamic balance and voluntary quadriceps activation. Knee Surg Sports Traumatol Arthrosc 25:172–183

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ohlendorf.

Ethics declarations

Interessenkonflikt

S. Missalla, J. Schulze, J. Bille, L. Maltry und D. Ohlendorf geben an, dass kein Interessenkonflikt besteht.

Für die Studie liegt ein genehmigter Ethikantrag der medizinischen Fakultät der Goethe-Universität Frankfurt vor (Nr. 20/17).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Missalla, S., Schulze, J., Bille, J. et al. Auswirkungen von Kniebeschwerden auf die posturale Kontrolle unter Ausschluss der Muskulatur des kraniomandibulären Systems. Orthopäde 49, 510–521 (2020). https://doi.org/10.1007/s00132-019-03831-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-019-03831-5

Schlüsselwörter

Keywords

Navigation