Vitamin E-blended versus conventional polyethylene liners in prostheses

Prospective, randomized trial with 3-year follow-up

Vitamin-E-vermischte vs. konventionelle Polyethyleninlays in der Prothetik

Prospektive, randomisierte Studie mit 3-Jahres-Follow-up



Despite continuous technical improvements, polyethylene wear debris induced periprosthetic osteolysis remains the main cause for failure of hip arthroplasty. Progressive oxidation of polyethylene was identified as another risk factor for material failure. To overcome this problem, antioxidants such as vitamin E (alpha-tocopherol) were supplemented by diffusion into the latest generation of polyethylene liners.


The purpose of the present study was to investigate the clinical outcome of patients treated with vitamin E blended highly cross-linked ultra-high molecular weight polyethylene liners (UHMWPE-XE) in comparison with conventional UHMWPE‑X liners by evaluating patient-reported outcome measures (PROM’s) at 3‑year follow-up.


A total of 143 patients were recruited into this prospective, randomized trial in our academic center. Three years after implantation, 101 patients were examined in the outpatient clinic for follow-up. Of these, 51 (50.5%) received UHMWPE-XE and 50 (49.5%) UHMWPE‑X liners. Clinical outcome was evaluated using Harris-Hip-Score (HHS) UCLA-Score and Hip Disability and Osteoarthritis Outcome Score (HOOS).


There was a significant improvement in all PROM’s at one- and three-year follow-up compared to the status before implantation. PROM’s did not differ significantly between the first and third year follow-up. Both liner groups showed an equal clinical outcome.


The present study demonstrates that the supplementation of vitamin E to polyethylene liners is reliable and safe without showing higher complication rates compared with conventional polyethylene liners. The shortterm clinical outcome of vitamin E-blended (UHMWPE‑XE) is equivalent to those of conventional highly cross-linked polyethylene liners.



Trotz der stetigen Verbesserung der Materialeigenschaften bleibt die durch Abriebpartikel von Polyethylen im periprothetischen Gewebe induzierte aseptische Inflammation mit Osteoklastenaktivierung und aseptischer Prothesenlockerung eine der Hauptkomplikationen in der Hüftendoprothetik. Als weitere Gründe für den Materialverschleiß von Polyethylen wurden Oxidationsprozesse identifiziert. Zur Überwindung dieser Problematik, werden seit einigen Jahren hochvernetzte Polyethylen-Inlays hergestellt, die mit dem Antioxidans Tocopherol (Vitamin E) vorbehandelt werden. Das Ziel dieser Studie war es, die klinischen Ergebnisse von Patienten, denen Vitamin E “blended” bzw. konventionelle Polyethylen-Inlays in der Hüftendoprothetik implantiert wurden, anhand von PROM’s (patient related outcome measurements) zu bewerten.


In unserem Zentrum wurden insgesamt 143 Patienten in diese prospektive, randomisierte Studie eingeschlossen. Zur 3‑Jahresnachuntersuchung kamen insgesamt 101 Patienten, von denen 51 ein Vitamin E vermischtes (50,5%) und 50 ein konventionelles (49,5%) Polyethylen-Inlay erhielten. Das klinische Ergebnis wurde anhand von Harris-Hip-Score (HHS) UCLA-Score und Hip Disability und Osteoarthritis Outcome Score (HOOS) bewertet.


Es zeigte eine signifikante Verbesserung von allen PROM’s bei der 1-Jahresnachuntersuchung im Vergleich zum präoperativen Befund in beiden Kohorten. Die Ergebnisse verblieben auf hohem Niveau bei der 3-Jahresnachuntersuchung.


Die vorliegende Studie zeigt, dass der Einsatz von Vitamin E „blended“ Polyethylen-Inlays in der Hüftendoprothetik zuverlässig und sicher ist. Die klinischen Kurzzeitergebnisse sind denen von konventionellen Polyethylen-Inlays gleichwertig.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Activities of daily living


American Society of Anesthesiologists




Harris hip score


Hip disability and osteoarthritis outcome score


Highly cross-linked polyethylene




Patient-reported outcome measures


Quality of life


Standard deviation


Total hip arthroplasty


University of California Los Angeles


Ultrahigh molecular weight polyethylene


Conventional cross-linked ultrahigh molecular weight polyethylene


Highly cross-linked ultrahigh molecular weight polyethylene


  1. 1.

    Clark CR, Heckman JD (2001) Volume versus outcomes in orthopaedic surgery: a proper perspective is paramount. J Bone Joint Surg Am 83-A(11):1619–1621

    Article  Google Scholar 

  2. 2.

    Gundtoft PH, Overgaard S, Schonheyder HC, Moller JK, Kjaersgaard-Andersen P, Pedersen AB (2015) The “true” incidence of surgically treated deep prosthetic joint infection after 32,896 primary total hip arthroplasties. Acta Orthop 86(3):326–334.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Beaulé PE, Campbell P, Mirra J, Hooper JC, Schmalzried TP (2001) Osteolysis in a cementless, second generation metal-on-metal hip replacement. Clin Orthop Relat Res 386:159–165

    Article  Google Scholar 

  4. 4.

    Haversath M, Klebingat S, VITAS-Gruppe, Jäger M (2018) Abriebanalyse mit virtuellen CAD-basierten Röntgenaufnahmen in der Endoprothetik. Orthopade 47(10):811–819.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Benignus C, Morlock M, Beckmann J (2019) Hüftendoprothetik beim jungen Patienten: Gleitpaarungen und Individualendoprothesen. Orthopade 48(4):292–299.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Tindall A, James KD, Slack R, James C, Shetty AA (2007) Long-term follow-up of a hydroxyapatite ceramic-coated threaded cup: an analysis of survival and fixation at up to 15 years. J Arthroplasty 22(8):1079–1082

    Article  Google Scholar 

  7. 7.

    Yoon PW, Yoo JJ, Kim Y, Yoo S, Lee S, Kim HJ (2016) The epidemiology and national trends of bearing surface usage in primary total hip Arthroplasty in korea. Clin Orthop Surg 8(1):29–37.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Hwang KT, Kim YH, Kim YS, Choi IY (2013) Is second generation metal-on-metal primary total hip arthroplasty with a 28 mm head a worthy option?: a 12- to 18-year follow-up study. J Arthroplasty 28(10):1828–1833

    Article  Google Scholar 

  9. 9.

    Ha YC, Kim SY, Kim HJ, Yoo JJ, Koo KH (2007) Ceramic liner fracture after cementless alumina-on-alumina total hip arthroplasty. Clin Orthop Relat Res 458:106–110.

    Article  PubMed  Google Scholar 

  10. 10.

    Jäger M, Wild A, Werner A, Munz D, Krauspe R (2002) Fracture analysis of a ceramic liner. Is in hip endoprosthesis replacement of ceramic on ceramic components with only one of the corresponding partners justified? Biomed Tech 47(12):306–309

    Article  Google Scholar 

  11. 11.

    Cobelli N, Scharf B, Crisi GM, Hardin J, Santambrogio L (2011) Mediators of the inflammatory response to joint replacement devices. Nat Rev Rheumatol 7(10):600–608

    CAS  Article  Google Scholar 

  12. 12.

    Jacobs CA, Christensen CP, Greenwald AS, McKellop H (2007) Clinical performance of highly cross-linked polyethylenes in total hip arthroplasty. J Bone Joint Surg Am 89(12):2779–2786

    Article  Google Scholar 

  13. 13.

    Puppulin L, Sugano N, Zhu W, Pezzotti G (2014) Structural modifications induced by compressive plastic deformation in single-step and sequentially irradiated UHMWPE for hip joint components. J Mech Behav Biomed Mater 31:86–99

    Article  Google Scholar 

  14. 14.

    Jäger M, van Wasen A, Warwas S, Landgraeber S, Haversath M, Group V (2014) A multicenter approach evaluating the impact of vitamin e‑blended polyethylene in cementless total hip replacement. Orthop Rev (Pavia) 6(2):5285.

    Article  Google Scholar 

  15. 15.

    Sayeed SA, Mont MA, Costa CR, Johnson AJ, Naziri Q, Bonutti PM, Delanois RE (2011) Early outcomes of sequentially cross-linked thin polyethylene liners with large diameter femoral heads in total hip arthroplasty. Bull NYU Hosp Jt Dis 69(Suppl 1):S90–S94

    PubMed  Google Scholar 

  16. 16.

    Oral E, Malhi A, Muratoglu O (2006) Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE. Biomaterials 27:917–925

    CAS  Article  Google Scholar 

  17. 17.

    MacDonald D, Sakona A, Ianuzzi A et al (2011) Do first-generation highly crosslinked polyethylenes oxidize in vivo? Clin Orthop Relat Res 469:2278–2285

    Article  Google Scholar 

  18. 18.

    Wannomae KK, Christensen SD, Freiberg AA et al (2006) The effect of real-time aging on the oxidation and wear of highly crosslinked UHMWPE acetabular liners. Biomaterials 27:1980–1987

    CAS  Article  Google Scholar 

  19. 19.

    Currier BH, Van Citters DW, Currier JH, Collier JP (2010) In vivo oxidation in remelted highly cross-linked retrievals. J Bone Joint Surg Am 92:2409–2418

    CAS  Article  Google Scholar 

  20. 20.

    Jarrett BT, Cofske J, Rosenberg AE et al (2010) In vivo biological response to vitamin E and vitamin-E-doped polyethylene. J Bone Joint Surg Am 92:2672–2681

    Article  Google Scholar 

  21. 21.

    Oral E, Muratoglu OK (2011) Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop 35:215–223

    Article  Google Scholar 

  22. 22.

    Oral E, Wannomae KK, Rowell SL, Muratoglu OK (2006) Migration stability of alphatocopherol in irradiated UHMWPE. Biomaterials 27:2434–2439

    CAS  Article  Google Scholar 

  23. 23.

    Turner A, Okubo Y, Teramura S et al (2014) The antioxidant and non-antioxidant contributions of vitamin E in vitamin E blended ultra-high molecular weight polyethylene for total knee replacement. J Mech Behav Biomed Mater 31:21–30

    CAS  Article  Google Scholar 

  24. 24.

    Wolf C, Krivec T, Blassnig J et al (2002) Examination of the suitability of alpha-tocopherol as a stabilizer for ultra-high molecular weight polyethylene used for articulating surfaces in joint endoprostheses. J Mater Sci Mater Med 13:185–189

    CAS  Article  Google Scholar 

  25. 25.

    Wolf C, Macho C, Lederer K (2006) Accelerated ageing experiments with crosslinked and conventional ultra-high molecular weight polyethylene (UHMW-PE) stabilised with alpha-tocopherol for total joint arthroplasty. J Mater Sci Mater Med 17:1333–1340

    CAS  Article  Google Scholar 

  26. 26.

    Morlock MM, Jäger M (2017) Endoprothetik des älteren Menschen; Biomaterialien: Implantatwahl, Verankerungstechnik. Orthopade 46(1):4–17.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Oral E, Ghali BW, Rowell SL et al (2010) A surface crosslinked UHMWPE stabilized by vitamin E with low wear and high fatigue strength. Biomaterials 31:7051–7060

    CAS  Article  Google Scholar 

  28. 28.

    Kurtz SM, Dumbleton J, Siskey RS et al (2009) Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation. J Biomed Mater Res A 90:549–563

    CAS  Article  Google Scholar 

  29. 29.

    Grupp TM, Holderied M, Mulliez MA, Streller R, Jäger M, Blömer W, Utzschneider S (2014) Biotribology of a vitamin E‑stabilized polyethylene for hip arthroplasty - Influence of artificial ageing and third-body particles on wear. Acta Biomater 10(7):3068–3078.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Bracco P, Oral E (2011) Vitamin E‑stabilized UHMWPE for total joint implants: a review. Clin Orthop Relat Res 469:2286–2293

    Article  Google Scholar 

  31. 31.

    Parth M, Aust N, Lederer K (2002) Studies on the effect of electron beam radiation on the molecular structure of ultra-high molecular weight polyethylene under the influence of alpha-tocopherol with respect to its application in medical implants. J Mater Sci Mater Med 13(10):917–921

    CAS  Article  Google Scholar 

  32. 32.

    Oral E, Greenbaum E, Malhi A, Muratoglu O (2005) Characterization of blends of α‑Tocopherol with UHMWPE. Biomaterials 26:6657–6663

    CAS  Article  Google Scholar 

  33. 33.

    Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 51:737–755

    CAS  Article  Google Scholar 

  34. 34.

    Nilsdotter AK, Lohmander LS, Klassbo M, Roos EM (2003) Hip disability and osteoarthritis outcome score (HOOS)--validity and responsiveness in total hip replacement. BMC Musculoskelet Disord 4:10

    Article  Google Scholar 

  35. 35.

    Rahman WA, Garbuz DS, Masri BA (2013) Total hip arhtroplasty in steroid-induced osteonecrosis: early functional and radiological outcomes. Can J Surg 56:41–46

    Article  Google Scholar 

  36. 36.

    Amstutz HC, Thomas BJ, Jinnah R et al (1984) Treatment of primary osteoarthritis of the hip. A comparison of total joint and surface replacement arthroplasty. J Bone Joint Surg Am 66:228–241

    CAS  Article  Google Scholar 

  37. 37.

    Canadian Joint Replacement Registry (2008) Hip and knee replacements in Canada. 2008 annual report. Canadian Institute for Health Information c2009, Ottawa – Ontario

    Google Scholar 

  38. 38.

    Oral E, Muratoglu OK (2011) Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop 35(2):215–223.

    Article  PubMed  Google Scholar 

  39. 39.

    Hodrick J, Severson E, McAlister D, Dahl B, Hofmann A (2008) Highly crosslinked polyethylene is safe fro use in total knee arthroplasty. Clin Orthop Relat Res 466:2806–2812.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Manning DW, Chiang PP, Martell JM, Galante JO, Harris WH (2005) In vivo comparative wear study of traditional and highly cross-linked polyethylene in total hip arthroplasty. J Arthroplasty 20(7):880–886.

    Article  PubMed  Google Scholar 

  41. 41.

    Sutula LC, Collier JP, Saum KA, Currier BH, Currier JH, Sanford WM, Mayor MB, Wooding RE, Sperling DK, Williams IR, Kasprzak DJ, Surprenant VA (1995) The Otto Aufranc Award. Impact of gamma sterilization on clinical performance of polyethylene in the hip. Clin Orthop Relat Res 319:28–40.

    Article  Google Scholar 

  42. 42.

    Yamamoto K, Tateiwa T, Takahashi Y (2017) Vitamin E‑stabilized highly crosslinked polyethylenes: The role and effectiveness in total hip arthroplasty. J Orthop Sci 22(3):384–390.

    Article  PubMed  Google Scholar 

  43. 43.

    Nebergall AK, Greene ME, Laursen MB, Nielsen PT, Malchau H, Troelsen A (2017) Vitamin E diffused highly cross-linked polyethylene in total hip arthroplasty at five years: a randomised controlled trial using radiostereometric analysis. Bone Joint J 99-B(5):577–584.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Salemyr M, Muren O, Ahl T, Bodén H, Chammout G, Stark A, Sköldenberg O (2015) Vitamin‑E diffused highly cross-linked polyethylene liner compared to standard liners in total hip arthroplasty. A randomized, controlled trial. Int Orthop 39(8):1499–1505.

    Article  PubMed  Google Scholar 

  45. 45.

    Wyatt M, Weidner J, Pfluger D, Beck M (2017) The RM Pressfit vitamys: 5‑year Swiss experience of the first 100 cups. Hip Int 27(4):368–372.

    Article  PubMed  Google Scholar 

  46. 46.

    Weiss RJ, Hailer NP, Stark A, Kärrholm J (2012) Survival of uncemented acetabular monoblock cups: evaluation of 210 hips in the Swedish Hip Arthroplasty Register. Acta Orthop 83(3):214–219.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Sculco TP (2002) The acetabular component: an elliptical monoblock alternative. J Arthroplasty 17:118–120

    Article  Google Scholar 

  48. 48.

    Scemama C, Anract P, Dumaine V, Babinet A, Courpied JP, Hamadouche M (2017) Does vitamin E‑blended polyethylene reduce wear in primary total hip arthroplasty: a blinded randomised clinical trial. Int Orthop 41(6):1113–1118.

    Article  PubMed  Google Scholar 

  49. 49.

    Otto-Lambertz C, Yagdiran A, Wallscheid F, Eysel P, Jung N (2017) Periprosthetic infection in joint replacement. Dtsch Arztebl Int 114(20):347–353.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Wetters NG, Murray TG, Moric M, Sporer SM, Paprosky WG, Della Valle CJ (2013) Risk factors for dislocation after revision total hip arthroplasty. Clin Orthop Relat Res 471:410–416

    Article  Google Scholar 

  51. 51.

    Karachalios T, Komnos G, Koutalos A (2018) Total hip arthroplasty: Survival and modes of failure. EFORT Open Rev 3(5):232–239.

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Bozic KJ, Kurtz SM, Lau E, Ong K, Vail TP, Berry DJ (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am 91(1):128–133

    Article  Google Scholar 

  53. 53.

    Ullmark G (2016) The unstable total hip arthroplasty. Efort Open Rev 1(4):83–88.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


The study is financially supported by B. Braun-Aesculap AG, Tuttlingen, Germany; trial registration: NCT01713062.

Members of the Vitas group

Jäger M (Klinik für Orthopädie, Unfall- und Wiederherstellungschirurgie, St. Marienhospital Mülheim, Contilia Gruppe für die Universität Duisburg-Essen, Germany), Landgraeber S, Serong S (Department of Orthopaedics, University of Saarland, Saarbrücken, Germany), Haversath M, von Wasen A (Department of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Essen, Germany), Windhagen H, Flörkemeier T, Budde S, Kubilay J, Noll Y (Klinik für Orthopädie, Diakovere Annastift, Medizinische Hochschule Hannover, Hannover, Germany), Delank KS, Baghdadi J (Klinik für Orthopädie und Unfallchirurgie, Universität Halle, Halle, Germany), Willburger R (Orthopädie und Unfallchirurgie, Katholisches Klinikum Bochum, Ruhr-Universität Bochum, Bochum, Germany), Dücker M (Klinik für Orthopädie, Marienhaus Klinikum St. Josef, Bendorf, Germany), Wilke A, Hütter F (Orthopädie, Unfall‑, Hand- und Wiederherstellungschirurgie, Elisabeth-Klinik, Bigge-Olsberg, Germany)

Author information





All authors ensured that they had furnished a substantial contribution to the article and that they are in agreement with the form and contents of the manuscript.

Corresponding author

Correspondence to Dr. André Busch.

Ethics declarations

Conflict of interest

A. Busch, M. Haversath, VITAS group, A. Wegner and M. Jäger declare that they have no competing interests.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. All patients consented to publish personal data in an anonymized form. The study was approved by the local ethics committee (11-4845-BO). The study was registered on (registration number NCT01713062).

Additional information

All authors were fully involved in the study and preparation of the manuscript.

The members of the Vitas group are listed at the end of the article.

Availability of data and materials

All patient-related data were collected by file research from the archives of the participating centers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Busch, A., Jäger, M., VITAS group. et al. Vitamin E-blended versus conventional polyethylene liners in prostheses. Orthopäde 49, 1077–1085 (2020).

Download citation


  • Biomaterials
  • Antioxidant
  • Patient-related outcome measurement
  • Total hip replacement
  • Prosthesis durability


  • Biomaterialien
  • Antioxidans
  • Patientenbezogene Ergebnismessung
  • Hüfttotalendoprothese
  • Prothesenhaltbarkeit