Skip to main content

Advertisement

Log in

Komplikationen im zeitlichen Verlauf nach einer operativen Wirbelsäulenversorgung

Peak timing for complications after spine surgery

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Postoperative Komplikationen in der Wirbelsäulenchirurgie sind häufig. Über die Zeitpunkte des jeweiligen Komplikationseintritts im postoperativen Verlauf wurde bisher nur spärlich berichtet. Die Erfassung der Häufigkeitsgipfel postoperativer Komplikationen hat jedoch wesentlichen Einfluss auf die Aufklärung der Patienten sowie die postoperativen Verlaufskontrollen.

Material und Methoden

In dieser monozentrischen retrospektiven Studie wurden die postoperativen Komplikationen von 1179 Patienten, die zwischen 2010 und 2015 mittels Spondylodese operativ versorgt worden waren, erfasst. Die Patienten wurden 3, 6, 12, 24 und 36 Monate postoperativ nachuntersucht. Gemäß der bestehenden Lokalisation und Pathologieart wurden die Patienten in Gruppen eingeteilt und die erfassten Komplikationen statistisch analysiert.

Ergebnisse

Aufgrund einer Komplikation wurde bei 16,9 % der 1179 Patienten eine Revision vorgenommen. Die meisten Komplikationen traten binnen der ersten 3 Monate auf (72,9 %). Der häufigste Grund für diese Revision war eine tiefe Wundinfektion (42,7 %). Die meisten Infektionen entwickelten die Patienten innerhalb der ersten 3 Monate nach der Operation (91,8 % aller Infektionen), sodass diese als Frühinfektionen definiert werden können. Der Häufigkeitsgipfel des Materialversagens zeigte sich im 2. postoperativen Jahr mit 46 % aller erfasster Materialversagen (2,5 % der Gesamtkomplikationen).

Diskussion

Der Häufigkeitsgipfel postoperativer Komplikationen nach Spondylodese tritt bereits innerhalb der ersten 3 postoperativen Monate ein. Die Wundinfektion stellt die häufigste Komplikation dar. Dennoch ist eine regelmäßige und langfristige postoperative klinisch-radiologische Verlaufskontrolle notwendig, da v. a. das Materialversagen erst innerhalb des 2. postoperativen Jahres einen Häufigkeitsgipfel aufweist.

Abstract

Background

Spine surgeries can pose many complications; however, peak timing of post-operative complications in the field of spine surgery is still not sufficiently delineated in the literature as yet. Nevertheless the determination of peak timing of post-operative complications has a significant influence on patient education and post-operative follow-up.

Materials and methods

This single-center study analyzed the medical records of 1179 patients that underwent spinal instrumentation between 2010 and 2015 at 3, 6, 12, 24 and 36 months postoperatively. Complications were analyzed according to their time of onset.

Results

Of the 1179 patients included, 199 (16.9%) underwent revision surgery due to a complication. Peak timing for complications (72.9%) occurred within the first 3 months after surgery. Infection was the most common reason for revision surgery (42.7%) and most infections occurred within the first 3 months after surgery (early infections) (91.8% of infections). Peak timing for material failure occurred in the second post-operative year (46% of all detected prosthesis failures) (2.5% of all complications).

Discussion

Peak timing of post-operative complications post spinal instrumentation occurs as early on as within the first 3 months after surgery and post-operative infections remain the most common post-operative complication overall. Nonetheless, regular and long-term postoperative clinical and radiological follow-up is crucial, since in particular prosthesis failure has its peak timing in the second post-operative year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14
Abb. 15
Abb. 16

Abbreviations

ALIF:

„Anterior lumbar interbody fusion“

ASD:

Adulte spinale Deformität

BWK:

Brustwirbelkörper

BWS:

Brustwirbelsäule

HWS:

Halswirbelsäule

LWS:

Lendenwirbelsäule

PJK:

Proximale junktionale Kyphose

PSO:

Pedikelsubtraktionsosteotomie

TLIF:

„Transforaminal lumbar interbody fusion“

Literatur

  1. Smith JS, Klineberg E, Lafage V, Shaffrey CI, Schwab F, Lafage R et al (2016) Prospective multicenter assessment of perioperative and minimum 2‑year postoperative complication rates associated with adult spinal deformity surgery. J Neurosurg Spine 25(1):1–14

    PubMed  Google Scholar 

  2. Smith JS, Saulle D, Chen CJ, Lenke LG, Polly DW Jr., Kasliwal MK et al (2012) Rates and causes of mortality associated with spine surgery based on 108,419 procedures: a review of the Scoliosis Research Society Morbidity and Mortality Database. Spine 37(23):1975–1982

    PubMed  Google Scholar 

  3. Daniels AH, Bess S, Line B, Eltorai AEM, Reid DBC, Lafage V et al (2018) Peak timing for complications after adult spinal deformity surgery. World Neurosurg 115:e509–e15

    PubMed  Google Scholar 

  4. Kessler RA, De la Garza Ramos R, Purvis TE, Ahmed AK, Goodwin CR, Sciubba DM et al (2018) Impact of frailty on complications in patients with thoracic and thoracolumbar spinal fracture. Clin Neurol Neurosurg 169:161–165

    PubMed  Google Scholar 

  5. Ghobrial GM, Maulucci CM, Maltenfort M, Dalyai RT, Vaccaro AR, Fehlings MG et al (2014) Operative and nonoperative adverse events in the management of traumatic fractures of the thoracolumbar spine: a systematic review. Neurosurg Focus 37(1):E8

    PubMed  Google Scholar 

  6. Edwards CC 2nd, Bridwell KH, Patel A, Rinella AS, Berra A, Lenke LG (2004) Long adult deformity fusions to L5 and the sacrum. A matched cohort analysis. Spine 29(18):1996–2005

    PubMed  Google Scholar 

  7. Kim HJ, Iyer S, Zebala LP, Kelly MP, Sciubba D, Protopsaltis TS et al (2017) Perioperative neurologic complications in adult spinal deformity surgery: incidence and risk factors in 564 patients. Spine 42(6):420–427

    PubMed  Google Scholar 

  8. Smith JS, Shaffrey CI, Glassman SD, Berven SH, Schwab FJ, Hamill CL et al (2011) Risk-benefit assessment of surgery for adult scoliosis: an analysis based on patient age. Spine 36(10):817–824

    PubMed  Google Scholar 

  9. Glassman SD, Hamill CL, Bridwell KH, Schwab FJ, Dimar JR, Lowe TG (2007) The impact of perioperative complications on clinical outcome in adult deformity surgery. Spine 32(24):2764–2770

    PubMed  Google Scholar 

  10. Dapunt U, Burkle C, Gunther F, Pepke W, Hemmer S, Akbar M (2017) Surgical site infections following instrumented stabilization of the spine. Ther Clin Risk Manag 13:1239–1245

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pull ter Gunne AF, Mohamed AS, Skolasky RL, van Laarhoven CJ, Cohen DB (2010) The presentation, incidence, etiology, and treatment of surgical site infections after spinal surgery. Spine 35(13):1323–1328

    PubMed  Google Scholar 

  12. Sierra-Hoffman M, Jinadatha C, Carpenter JL, Rahm M (2010) Postoperative instrumented spine infections: a retrospective review. South Med J 103(1):25–30

    PubMed  Google Scholar 

  13. Kim J, Burke SM, Qu E, Hwang SW, Riesenburger RI (2015) Application of Intrawound Vancomycin powder during spine surgery in a patient with dialysis-dependent renal failure. Case Rep Surg 2015:321682

    PubMed  PubMed Central  Google Scholar 

  14. Lee GI, Bak KH, Chun HJ, Choi KS (2016) Effect of using local Intrawound Vancomycin powder in addition to intravenous antibiotics in posterior lumbar surgery: midterm result in a single-center study. Korean J Spine 13(2):47–52

    PubMed  PubMed Central  Google Scholar 

  15. Hida T, Ando K, Kobayashi K, Ito K, Tsushima M, Matsumoto A et al (2017) Intrawound Vancomycin powder as the prophylaxis of surgical site infection after invasive spine surgery with a high risk of infection. Nagoya J Med Sci 79(4):545–550

    PubMed  PubMed Central  Google Scholar 

  16. Hey HW, Thiam DW, Koh ZS, Thambiah JS, Kumar N, Lau LL et al (2017) Is Intraoperative local vancomycin powder the answer to surgical site infections in spine surgery? Spine 42(4):267–274

    PubMed  Google Scholar 

  17. Theologis AA, Demirkiran G, Callahan M, Pekmezci M, Ames C, Deviren V (2014) Local intrawound vancomycin powder decreases the risk of surgical site infections in complex adult deformity reconstruction: a cost analysis. Spine 39(22):1875–1880

    PubMed  Google Scholar 

  18. Lehner B, Akbar M, Beckmann NA (2018) Infections after reconstructive spinal interventions : how do I deal with them? Orthopade 47(4):288–295

    PubMed  Google Scholar 

  19. O’Toole RV, Joshi M, Carlini AR, Murray CK, Allen LE, Scharfstein DO et al (2017) Local antibiotic therapy to reduce infection after operative treatment of fractures at high risk of infection: a multicenter, randomized, controlled trial (VANCO study). J Orthop Trauma 31(Suppl 1):S18–S24

    PubMed  Google Scholar 

  20. Strom RG, Pacione D, Kalhorn SP, Frempong-Boadu AK (2013) Lumbar laminectomy and fusion with routine local application of vancomycin powder: decreased infection rate in instrumented and non-instrumented cases. Clin Neurol Neurosurg 115(9):1766–1769

    PubMed  Google Scholar 

  21. Mehmanparast H, Petit Y, Mac-Thiong JM (2015) Comparison of pedicle screw loosening mechanisms and the effect on fixation strength. J Biomech Eng 137(12):121003

    PubMed  Google Scholar 

  22. Bredow J, Boese CK, Werner CM, Siewe J, Lohrer L, Zarghooni K et al (2016) Predictive validity of preoperative CT scans and the risk of pedicle screw loosening in spinal surgery. Arch Orthop Trauma Surg 136(8):1063–1067

    PubMed  Google Scholar 

  23. Nagaraja S, Palepu V (2017) Integrated fixation cage loosening under fatigue loading. Int J Spine Surg 11:20

    PubMed  PubMed Central  Google Scholar 

  24. Wimmer C, Gluch H (1998) Aseptic loosening after CD instrumentation in the treatment of scoliosis: a report about eight cases. J Spinal Disord 11(5):440–443

    CAS  PubMed  Google Scholar 

  25. Hallab NJ, Cunningham BW, Jacobs JJ (2003) Spinal implant debris-induced osteolysis. Spine 28(20):S125–S138

    PubMed  Google Scholar 

  26. Moojen DJ, van Hellemondt G, Vogely HC, Burger BJ, Walenkamp GH, Tulp NJ et al (2010) Incidence of low-grade infection in aseptic loosening of total hip arthroplasty. Acta Orthop 81(6):667–673

    PubMed  PubMed Central  Google Scholar 

  27. Trampuz A, Zimmerli W (2005) Prosthetic joint infections: update in diagnosis and treatment. Swiss Med Wkly 135(17–18):243–251

    PubMed  Google Scholar 

  28. Shifflett GD, Bjerke-Kroll BT, Nwachukwu BU, Kueper J, Burket J, Sama AA et al (2016) Microbiologic profile of infections in presumed aseptic revision spine surgery. Eur Spine J 25(12):3902–3907

    PubMed  Google Scholar 

  29. Andres-Cano P, Cervan A, Rodriguez-Solera M, Ortega AJ, Rebollo N, Guerado E (2018) Surgical infection after posterolateral lumbar spine arthrodesis: CT analysis of spinal fusion. Orthop Surg 10(2):89–97

    PubMed  PubMed Central  Google Scholar 

  30. Leitner L, Malaj I, Sadoghi P, Amerstorfer F, Glehr M, Vander K et al (2018) Pedicle screw loosening is correlated to chronic subclinical deep implant infection: a retrospective database analysis. Eur Spine J 27(10):2529–2535

    PubMed  Google Scholar 

  31. Onsea J, Depypere M, Govaert G, Kuehl R, Vandendriessche T, Morgenstern M et al (2018) Accuracy of tissue and sonication fluid sampling for the diagnosis of fracture-related infection: a systematic review and critical appraisal. J Bone Jt Infect 3(4):173–181

    PubMed  PubMed Central  Google Scholar 

  32. Steinhausen E (2017) Low-Grade-Infekt. Trauma Berufskrankh 19(3):267–271

    Google Scholar 

  33. Pihlajamaki H, Myllynen P, Bostman O (1997) Complications of transpedicular lumbosacral fixation for non-traumatic disorders. J Bone Joint Surg Br 79(2):183–189

    CAS  PubMed  Google Scholar 

  34. Akazawa T, Kotani T, Sakuma T, Nemoto T, Minami S (2013) Rod fracture after long construct fusion for spinal deformity: clinical and radiographic risk factors. J Orthop Sci 18(6):926–931

    PubMed  Google Scholar 

  35. Kim YJ, Bridwell KH, Lenke LG, Rhim S, Cheh G (2006) Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases. Spine 31(20):2329–2336

    PubMed  Google Scholar 

  36. Broom MJ, Banta JV, Renshaw TS (1989) Spinal fusion augmented by luque-rod segmental instrumentation for neuromuscular scoliosis. J Bone Joint Surg Am 71(1):32–44

    CAS  PubMed  Google Scholar 

  37. Dickson JH, Harrington PR, Erwin WD (1978) Results of reduction and stabilization of the severely fractured thoracic and lumbar spine. J Bone Joint Surg Am 60(6):799–805

    CAS  PubMed  Google Scholar 

  38. Smith JS, Shaffrey E, Klineberg E, Shaffrey CI, Lafage V, Schwab FJ et al (2014) Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine 21(6):994–1003

    PubMed  Google Scholar 

  39. Smith JS, Shaffrey CI, Ames CP, Demakakos J, Fu KM, Keshavarzi S et al (2012) Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery 71(4):862–867

    PubMed  Google Scholar 

  40. Kelly BP, Shen FH, Schwab JS, Arlet V, Diangelo DJ (2008) Biomechanical testing of a novel four-rod technique for lumbo-pelvic reconstruction. Spine 33(13):E400–E406

    PubMed  Google Scholar 

  41. Scheer JK, Tang JA, Deviren V, Buckley JM, Pekmezci M, McClellan RT et al (2011) Biomechanical analysis of revision strategies for rod fracture in pedicle subtraction osteotomy. Neurosurgery 69(1):164–172 (discussion 72)

    PubMed  Google Scholar 

  42. Dick JC, Bourgeault CA (2001) Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Spine 26(15):1668–1672

    CAS  PubMed  Google Scholar 

  43. Luca A, Lovi A, Galbusera F, Brayda-Bruno M (2014) Revision surgery after PSO failure with rod breakage: a comparison of different techniques. Eur Spine J 23(Suppl 6):610–615

    PubMed  Google Scholar 

  44. Berjano P, Bassani R, Casero G, Sinigaglia A, Cecchinato R, Lamartina C (2013) Failures and revisions in surgery for sagittal imbalance: analysis of factors influencing failure. Eur Spine J 22(Suppl 6):S853–S858

    PubMed  Google Scholar 

  45. Gupta MC, Diebo BG, Protopsaltis TS, Hart RA, Smith JS, Ames CP et al (2016) Bimodal incidence and causes of proximal junctional kyphosis (PJK) in adult spinal deformity (ASD). Spine J 16(10):S327

    Google Scholar 

  46. Diebo BG, Shah NV, Stroud SG, Paulino CB, Schwab FJ, Lafage V (2018) Realignment surgery in adult spinal deformity : prevalence and risk factors for proximal junctional kyphosis. Orthopade 47(4):301–309

    CAS  PubMed  Google Scholar 

  47. Sokolowski MJ, Garvey TA, Perl J 2nd, Sokolowski MS, Cho W, Mehbod AA et al (2008) Prospective study of postoperative lumbar epidural hematoma: incidence and risk factors. Spine 33(1):108–113

    PubMed  Google Scholar 

  48. Scavarda D, Peruzzi P, Bazin A, Scherpereel B, Gomis P, Graftieaux JP et al (1997) Postoperative spinal extradural hematomas. 14 cases. Neurochirurgie 43(4):220–227

    CAS  PubMed  Google Scholar 

  49. Kou J, Fischgrund J, Biddinger A, Herkowitz H (2002) Risk factors for spinal epidural hematoma after spinal surgery. Spine 27(15):1670–1673

    CAS  PubMed  Google Scholar 

  50. Lawton MT, Porter RW, Heiserman JE, Jacobowitz R, Sonntag VK, Dickman CA (1995) Surgical management of spinal epidural hematoma: relationship between surgical timing and neurological outcome. J Neurosurg 83(1):1–7

    CAS  PubMed  Google Scholar 

  51. Cabana F, Pointillart V, Vital J, Senegas J (2000) Postoperative compressive spinal epidural hematomas. 15 cases and a review of the literature. Rev Chir Orthop Reparatrice Appar Mot 86(4):335–345

    CAS  PubMed  Google Scholar 

  52. Soroceanu A, Oren JH, Smith JS, Hostin R, Shaffrey CI, Mundis GM et al (2016) Effect of antifibrinolytic therapy on complications, thromboembolic events, blood product utilization, and fusion in adult spinal deformity surgery. Spine 41(14):E879–E886

    PubMed  Google Scholar 

  53. Raksakietisak M, Sathitkarnmanee B, Srisaen P, Duangrat T, Chinachoti T, Rushatamukayanunt P et al (2015) Two doses of tranexamic acid reduce blood transfusion in complex spine surgery: a prospective randomized study. Spine 40(24):E1257–E1263

    PubMed  Google Scholar 

  54. Verma K, Kohan E, Ames CP, Cruz DL, Deviren V, Berven S et al (2015) A comparison of two different dosing protocols for tranexamic acid in posterior spinal fusion for spinal deformity: a prospective, randomized trial. Int J Spine Surg 9:65

    PubMed  PubMed Central  Google Scholar 

  55. Bullmann V, Granitzka M (2018) Blood management in complex reconstructive spine surgery in ASD patients : do effective measures to reduce bleeding exist? Orthopade 47(4):296–300

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akbar MD.

Ethics declarations

Interessenkonflikt

W. Pepke, C. Wantia, H. Almansour, T. Bruckner, M. Thielen und M. Akbar geben an, dass kein Interessenkonflikt besteht.

Diese Studie wurde durch die lokale Ethikkommission genehmigt (Ethikantragsnummer S‑471/2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pepke, W., Wantia, C., Almansour, H. et al. Komplikationen im zeitlichen Verlauf nach einer operativen Wirbelsäulenversorgung. Orthopäde 49, 39–58 (2020). https://doi.org/10.1007/s00132-019-03770-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-019-03770-1

Schlüsselwörter

Keywords

Navigation