Advertisement

Der Orthopäde

, Volume 47, Issue 6, pp 518–525 | Cite as

Relevanz der spinalen Navigation in der rekonstruktiven Halswirbelsäulenchirurgie

  • R. Kothe
  • M. Richter
Leitthema

Zusammenfassung

Hintergrund

Die spinale Navigation hat im Verlauf der letzten zwei Jahrzehnte erhebliche Fortschritte gemacht. Nach ersten Erfahrungen mit Pedikelschrauben in der Lendenwirbelsäule (LWS) und Brustwirbelsäule (BWS) haben die technologischen Verbesserungen zu einer vermehrten Anwendung im Bereich der Halswirbelsäule geführt. Operative Techniken, wie zervikale Pedikelschrauben, Massa-lateralis-Schrauben im Halswirbelkörper (HWK) 1 und transartikuläre C1/C2-Schrauben haben sich mithilfe der Navigation als Standardverfahren etabliert. Die verschiedenen Techniken der spinalen Navigation unterscheiden sich anhand des bildgebenden Datensatzes.

Technik

An der Halswirbelsäule (HWS) ist die präoperative Computertomographie (CT) mit der Notwendigkeit des intraoperativen Matchings aufgrund der hohen Bildqualität immer noch der klinische Standard. Die BV-basierte 3‑D-Navigation hat in den letzten Jahren eine breite Anwendung an der LWS gefunden, ist aber an der HWS bei komplexen anatomischen Verhältnissen sowie in den Übergangsregionen aufgrund der schlechteren Bildqualität nur eingeschränkt einsetzbar. Die zukünftige Verfügbarkeit der intraoperativen CT (iCT) kombiniert die Vorteile der hohen Bildqualität mit den Vorteilen der intraoperativen Bildakquise. Dies wird zu einer weiteren Verbreitung der spinalen Navigation an der HWS führen und zukünftig auch minimalinvasive Techniken mit hoher Präzision ermöglichen.

Anwendung

Die erfolgreiche Anwendung der spinalen Navigation basiert auf der Kenntnis der technischen Grundlagen und einen routinemäßigen Einsatz im klinischen Alltag. Nur mit ausreichender Erfahrung des Operationsteams lassen sich die Arbeitsabläufe optimieren, was dann neben der erhöhten Sicherheit auch zu einer Reduktion der Strahlenbelastung und Verkürzung der Operationszeiten führt.

Schlüsselwörter

3-D-Bildgebung Halswirbel Computernavigation Perioperative Komplikationen Schraubenfehlplatzierung 

Abkürzungen

BV

Bildverstärker

BWS

Brustwirbelsäule

CCÜ

Kraniozervikaler Übergang

CT

Computertomographie

DRB

Dynamische Referenzklemme

HWK

Halswirbelkörper

HWS

Halswirbelsäule

iCT

Intraoperative CT

LWS

Lendenwirbelsäule

MRT

Magnetresonanztomographie

SAS

Subaxiale Instabilität

VT

Vertikale Translokation

Relevance of spinal navigation in reconstructive surgery of the cervical spine

Abstract

Background

Spinal navigation has made significant advances in the last two decades. After initial experiences with pedicle screws in the thoracic and lumbar spine, technological improvements have resulted in their increased application in the cervical spine. Instrumentation techniques like cervical pedicle screws, lateral mass screws in C1 and transarticular screws C1/C2 have become standard due to the application of image guidance.

Technique

Different navigation techniques can be distinguished based on the type of imaging. In the cervical spine, the preoperative computer tomography (CT) scan that requires intraoperative matching is still the standard of care due to the high image quality. 3D fluoroscopy navigation techniques are currently widely used in the lumbar spine, but the reduced image quality obviates the application in the more sophisticated cervical anatomy or the cervicothoracic region. The future availability of intraoperative CT scans (iCT) combines the advantages of high image quality with those of intraoperative image acquisition. This will lead to a wider use of image guidance in the cervical spine and will enable the surgeon to apply minimally invasive techniques with higher accuracy.

Application

The successful application of spinal navigation is based on the technical knowledge of navigation systems and its exercise in daily routine. Only the sufficient experience of the clinical staff makes it possible to standardize operational procedures to increase patient safety, reduce radiation dose and shorten operation time.

Keywords

3-D imaging Cervical vertebrae Image-guided surgery Peroperative complications Screw misplacement 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Richter gibt an, dass er Autor eines zervikalen Implantatsystems der Firma Ulrich Medical, Ulm, Deutschland (Neon 2/3) ist und Lizenzgebühren erhält. Er erhält Beratungs- und Vortragshonorare von der Firma Brainlab, München. R. Kothe gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Abumi K, Ito H, Taneichi H, Kaneda K (1994) Transpedicular screw fixation for traumatic lesions of the middle and lower cervical spine: description of the techniques and preliminary report. J Spinal Disord 7:17–12CrossRefGoogle Scholar
  2. 2.
    Al Barbarawi MM, Allouh MZ (2015) Cervical lateral mass screw-rod fixation: surgical experience with 2500 consecutive screws, an analytical review, and long-term outcomes. Br J Neurosurg 29:699–704CrossRefPubMedGoogle Scholar
  3. 3.
    Amiot L‑P, Labelle H, DeGuise JA et al (1995) Computer-assisted pedicle screw fixation. A feasibility study. Spine 20:1208–1212CrossRefPubMedGoogle Scholar
  4. 4.
    Bydon M, Xu R, Amin AG et al (2014) Safety and efficacy of pedicle screw placement using intraoperative computed tomography: consecutive series of 1148 pedicle screws. J Neurosurg Spine 21:320–328CrossRefPubMedGoogle Scholar
  5. 5.
    Costa F, Ortolina A, Attuati L et al (2015) Management of C1–2 traumatic fractures using an intraoperative 3D imaging-based navigation system. J Neurosurg Spine 22:128–133CrossRefPubMedGoogle Scholar
  6. 6.
    Dea N, Fisher CG, Batke J et al (2016) Economic evaluation comparing intraoperative cone beam CT-based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: a patient-level data cost-effectiveness analysis. Spine J 16:23–31CrossRefPubMedGoogle Scholar
  7. 7.
    Dewey P, Incoll I (1998) Evaluation of thyroid shields for reduction of radiation exposure to orthopaedic surgeons. Aust N Z J Surg 68:635–636CrossRefPubMedGoogle Scholar
  8. 8.
    Gebhard FT, Kraus MD, Schneider E et al (2006) Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine 31:2024–2027CrossRefPubMedGoogle Scholar
  9. 9.
    Guha D, Jakubovic R, Gupta S et al (2017) Spinal intraoperative three dimensional navigation: correlation between clinical and absolute engineering accuracy. Spine J 17:489–498CrossRefPubMedGoogle Scholar
  10. 10.
    Guppy KH, Chakrabarti I, Banerjee A (2014) The use of intraoperative navigation for complex upper cervical spine surgery. Neurosurg Focus 36:E5CrossRefPubMedGoogle Scholar
  11. 11.
    Holly LT, Foley KT (2003) Intraoperative spinal navigation. Spine 28:S54–S61PubMedGoogle Scholar
  12. 12.
    Hott JS, Papadopoulos SM, Theodore N et al (2004) Intraoperative Iso-C C‑arm navigation in cervical spine surgery. Review of the first 52 cases. Spine 29:2856–2860CrossRefPubMedGoogle Scholar
  13. 13.
    Ishikawa Y, Kanemura T, Yoshida G et al (2012) Intraoperative, full rotation, three-dimensional image (O-arm)-based navigation system for cervical pedicle screw insertion. J Neurosurg Spine 15:472–478CrossRefGoogle Scholar
  14. 14.
    Jeanneret B, Gebhard JS, Magerl F (1994) Transpedicular screw fixation of articular mass fracture-separation: results of an anatomical study and operative technique. J Spinal Disord 7(1):222–229CrossRefPubMedGoogle Scholar
  15. 15.
    Kothe R, Rüther W, Schneider E et al (2004) Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine 29:1869–1875CrossRefPubMedGoogle Scholar
  16. 16.
    Kovanda TJ, Ansari SF, Qaiser R et al (2015) Feasibility of CT-based intraoperative 3D stereotactic image-guided navigation in the upper cervical spine of children 10 years of age or younger: initial experience. J Neurosurg Pediatr 16:590–598CrossRefPubMedGoogle Scholar
  17. 17.
    Laine T, Schlenzka D, Makitalo K et al (1997) Improved accuracy of pedicle screw insertion with computer-assisted surgery. A prospective clinical trial of 30 patients. Spine 22:1254–1258CrossRefPubMedGoogle Scholar
  18. 18.
    Ludwig SC, Kowalski JM, Edwards CC et al (2000) Cervical pedicle screws. Comparative accuracy of two insertion techniques. Spine 25:2675–2681CrossRefPubMedGoogle Scholar
  19. 19.
    Ludwig SC, Kramer DL, Balderston RA et al (2000) Placement of pedicle screws in the human cadaveric cervical spine. Comparative accuracy of three techniques. Spine 25:1655–1667CrossRefPubMedGoogle Scholar
  20. 20.
    Mac-Thiong J‑M, Parent S, Poitras B et al (2013) Neurological outcome and management of pedicle screws misplaced totally within the spinal canal. Spine 38:229–237CrossRefPubMedGoogle Scholar
  21. 21.
    Manbachi A, Cobbold RS, Ginsberg HJ (2014) Guided pedicle screw insertion: techniques and training. Spine J 14:165–179CrossRefPubMedGoogle Scholar
  22. 22.
    Mason A, Paulsen R, Babuska JM et al (2014) The accuracy of pedicle screw placement using image guidance systems. A systematic review. J Neurosurg Spine 20:196–203CrossRefPubMedGoogle Scholar
  23. 23.
    Mastrangelo G, Fedeli U, Fadda E et al (2005) Increased cancer risk among surgeons in an orthopaedic hospital. Occup Med (lond) 55:498–500CrossRefGoogle Scholar
  24. 24.
    Mendelsohn D, Strelzow J, Dea N et al (2016) Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J 16:343–354CrossRefPubMedGoogle Scholar
  25. 25.
    Navarro-Ramirez R, Lang G, Lian X et al (2017) Total navigation in spine surgery ; a concise guide to elminate fluoroscopy using a intraoperative computed tomography 3‑dimensional navigation system. World Neurosurg 100:325–335CrossRefPubMedGoogle Scholar
  26. 26.
    Nolte L‑P, Zamorano LJ, Jiang Z et al (1995) Image-guided insertion of transpedicular screws. A laboratory set-up. Spine 20:497–500CrossRefPubMedGoogle Scholar
  27. 27.
    Nottmeier EW, Pirris SM, Edwards S et al (2013) Operating room radiation exposure in cone beam computed tomography—based, image-guided spinal surgery. J Neurosurg Spine 19:226–231CrossRefPubMedGoogle Scholar
  28. 28.
    Pisapia JM, Nayak NR, Salinas RD et al (2017) Navigated odontoid screw placement using the O‑arm: technical note and case series. J Neurosurg Spine 26:10–18CrossRefPubMedGoogle Scholar
  29. 29.
    Rampersaud YR, Foley KT, Shen AC et al (2000) Radiation exposure of the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine 25:2637–2645CrossRefPubMedGoogle Scholar
  30. 30.
    Rahmathulla G, Nottmeier E, Pirris SM et al (2014) Intraoperative image-guided spinal navigation: technical pitfalls and their avoidance. Neurosurg Focus 36:E3CrossRefPubMedGoogle Scholar
  31. 31.
    Richter M, Cakir B, Schmidt R (2005) Cervical pedicle screws: conventional versus computer-assisted placement of cannulated screws. Spine 30:2280–2287CrossRefPubMedGoogle Scholar
  32. 32.
    Richter M, Mattes T, Cakir B (2004) Computer-assisted posterior instrumentation of the cervical and cervico-thoracic spine. Eur Spine J 13:50–59CrossRefPubMedGoogle Scholar
  33. 33.
    Richter M, Schmidt R, Claes L (2002) Posterior atlantoaxial fixation. Biomechanical comparison of six different techniques. Spine 27:1724–1732CrossRefPubMedGoogle Scholar
  34. 34.
    Richter M, Amiot L‑P, Neller S et al (2000) Computer-assisted surgery in posterior instrumentation of the cervical spine: an in-vitro feasibility study. Eur Spine J 9:S65–S70CrossRefPubMedGoogle Scholar
  35. 35.
    Schmidt R, Wilke H‑J, Claes L et al (2003) Pedicle screws enhance primary stability in multilevel cervical corporectomies: biomechanical in vitro comparison of different implants including constrained and nonconstrained posteriorinstrumentations. Spine 28:1821–1822CrossRefPubMedGoogle Scholar
  36. 36.
    Shimokawa N, Takami T (2017) Surgical safety of pedicle screw placement with computer navigation system. Neurosurg Rev 40:251–258CrossRefPubMedGoogle Scholar
  37. 37.
    Shin BJ, James AR, Njoku IU et al (2012) Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine 17:113–122CrossRefPubMedGoogle Scholar
  38. 38.
    Tian N‑F (2009) Image guided pedicle screw insertion accuracy: a meta-analysis. Int Orthop 33:895–903CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tjardes T, Shafizadeh S, Rixen D et al (2010) Image guided surgery: state of the art and future directions. Eur Spine J 19:25–45CrossRefPubMedGoogle Scholar
  40. 40.
    Uehara M, Takahashi J, Ikegami S et al (2014) Screw perforation features in 129 consecutive patients performed computer-guided cervical pedicle screw insertion. Eur Spine J 23:2189–2195CrossRefPubMedGoogle Scholar
  41. 41.
    Villard J, Ryang Y‑M, Demetriades AK et al (2014) Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation. Spine 39:1004–1009CrossRefPubMedGoogle Scholar
  42. 42.
    Weidner A, Wähler M, Chiu ST et al (2000) Modification of C1–C2 transarticular screw fixation by image-guided surgery. Spine 25:2668–2674CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Schön Klinik Hamburg EilbekKlinik für Spinale ChirurgieHamburgDeutschland
  2. 2.WirbelsäulenzentrumSt.-Josefs Hospital GmbHWiesbadenDeutschland

Personalised recommendations