Advertisement

Der Orthopäde

, Volume 47, Issue 4, pp 288–295 | Cite as

Infektionen nach rekonstruktiven Wirbelsäuleneingriffen

Wie gehe ich damit um?
  • Burkhard Lehner
  • Michael Akbar
  • Nicholas A. Beckmann
Leitthema

Zusammenfassung

Grundlagen

Postoperative Wirbelsäuleninfektionen werden bei bis zu 20 % der Patienten beschrieben, sie können schwerwiegende Folgen für den Patienten sowie drastisch erhöhte Behandlungskosten nach sich ziehen. Typische Erreger sind Haut- und Fäkalkeime. Risikofaktoren stellen Adipositas, Diabetes, ein hoher ASA-Wert und intraoperative Komplikationen wie hoher Blutverlust, Duraverletzung sowie wiederholte Operationen dar. Der Prophylaxe mit prä- und perioperativer Minimierung von Risikofaktoren kommt daher eine große Bedeutung zu.

Behandlung

Bei eingetretenem Infekt ist die frühzeitige operative Revision mit Debridement, Lavage und Gewebegewinnung für die mikrobiologische Aufarbeitung zu fordern. Bei frühen Infekten kann meist das Implantat erhalten werden. Adjuvante Maßnahmen, wie die Vakuumtherapie, können den Behandlungserfolg verbessern. Bei späten Infekten ist aufgrund der Biofilmbesiedlung der Implantatoberfläche oder einer Implantatlockerung das Spondylodesematerial zu entfernen und bei noch bestehender Instabilität zu wechseln. Diese Arbeit vermittelt eine Literaturübersicht zur Prophylaxe und Behandlung peri- und postoperativer Infektionen nach rekonstruktiven Wirbelsäuleneingriffen.

Schlüsselwörter

Antibiotikaprophylaxe Implantaterhalt Postoperative Infektion Postoperative Komplikationen Wirbelsäule 

Abkürzungen

ASA

American Society of Anaesthesiologists

BMI

Body-Mass-Index

CDC

Center for Disease Control

CI

Konfidenzintervall

COPD

„Chronic obstructive pulmonary disease“

CRP

C-reaktives Protein

ICD

International Statistical Classification of Diseases and Related Health Problems

MRSA

Methicillin-resistenter Staphylococcus aureus

PVA

Polyvinylalkohol

PVP

Polyvinylpyrrolidon

SMD

Standardisierte Mittelwertdifferenz

VRE

Vancomycin-resistente Enterokokken

Infections after reconstructive spinal interventions

How do I deal with them?

Abstract

Basics

Postoperative surgical site infections of the spine have been described in up to 20% of patients and can result in serious consequences for the patient and substantial treatment costs. Typical bacteria often arise from skin or fecal flora. Various risk factors for infection have been described, including obesity, diabetes, high ASA scores, as well as intraoperative factors such as heavy blood loss, dural tears, or several revision procedures. Consequently, the prophylaxis with pre- and postoperative risk minimization is of particular importance.

Treatment

When an infection has developed, it is important to carry out early operative revision involving tissue debridement, lavage and acquiring microbiological samples for culture. If the infection presents early, the instrumentation can often be retained. Adjuvant measures such as negative pressure wound treatment may improve the outcome. In late-onset infections, due to the biofilm production on the instrument surface or in cases of implant loosening, one should attempt to remove the instrumentation, and in cases of instability replace it. This article deals with the current literature on the subject and provides an overview of the data with regard to peri- and postoperative infections.

Keywords

Antibiotic prophylaxis Prosthesis retention Surgical site infection Postoperative complications Vertebral column 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

B. Lehner, M. Akbar und N. A. Beckmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Abdul-Jabbar A, Berven SH, Hu SS et al (2013) Surgical site infections in spine surgery: identification of microbiologic and surgical characteristics in 239 cases. Spine (Phila Pa 1976) 38:E1425–E1431CrossRefGoogle Scholar
  2. 2.
    Anderson PA, Savage JW, Vaccaro AR et al (2017) Prevention of surgical site infection in spine surgery. Neurosurgery 80:S114–S123CrossRefPubMedGoogle Scholar
  3. 3.
    Aydinli U, Karaeminogullari O, Tiskaya K (1999) Postoperative deep wound infection in instrumented spinal surgery. Acta Orthop Belg 65:182–187PubMedGoogle Scholar
  4. 4.
    Bains RS, Kardile M, Mitsunaga LK et al (2017) Postoperative spine dressing changes are unnecessary. Spine Deform 5:396–400CrossRefPubMedGoogle Scholar
  5. 5.
    Bakhsheshian J, Dahdaleh NS, Lam SK et al (2015) The use of vancomycin powder in modern spine surgery: systematic review and meta-analysis of the clinical evidence. World Neurosurg 83:816–823CrossRefPubMedGoogle Scholar
  6. 6.
    Biscevic M, Biscevic S, Ljuca F et al (2014) Postoperative infections after posterior spondylodesis of thoracic and lumbal spine. Surgical spine infections. Psychiatr Danub 26(Suppl 2):382–386PubMedGoogle Scholar
  7. 7.
    Biswas D, Bible JE, Whang PG et al (2008) Sterility of C‑arm fluoroscopy during spinal surgery. Spine (Phila Pa 1976) 33:1913–1917CrossRefGoogle Scholar
  8. 8.
    Breitner S, Ruckdeschel G (1986) Bacteriologic studies of the use of incision drapes in orthopedic operations. Unfallchirurgie 12:301–304CrossRefPubMedGoogle Scholar
  9. 9.
    Brown EM, Pople IK, De Louvois J et al (2004) Spine update: prevention of postoperative infection in patients undergoing spinal surgery. Spine (Phila Pa 1976) 29:938–945CrossRefGoogle Scholar
  10. 10.
    Cahill PJ, Warnick DE, Lee MJ et al (2010) Infection after spinal fusion for pediatric spinal deformity: thirty years of experience at a single institution. Spine (Phila Pa 1976) 35:1211–1217CrossRefGoogle Scholar
  11. 11.
    Cheng MT, Chang MC, Wang ST et al (2005) Efficacy of dilute betadine solution irrigation in the prevention of postoperative infection of spinal surgery. Spine (Phila Pa 1976) 30:1689–1693CrossRefGoogle Scholar
  12. 12.
    Cizik AM, Lee MJ, Martin BI et al (2012) Using the spine surgical invasiveness index to identify risk of surgical site infection: a multivariate analysis. J Bone Joint Surg Am 94:335–342CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Clark CE, Shufflebarger HL (1999) Late-developing infection in instrumented idiopathic scoliosis. Spine (Phila Pa 1976) 24:1909–1912CrossRefGoogle Scholar
  14. 14.
    Dapunt U, Burkle C, Gunther F et al (2017) Surgical site infections following instrumented stabilization of the spine. Ther Clin Risk Manag 13:1239–1245CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Duncan AE (2012) Hyperglycemia and perioperative glucose management. Curr Pharm Des 18:6195–6203CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Edwards JR, Peterson KD, Mu Y et al (2009) National Healthcare Safety Network (NHSN) report: data summary for 2006 through 2008, issued December 2009. Am J Infect Control 37:783–805CrossRefPubMedGoogle Scholar
  17. 17.
    Eiselt D (2009) Presurgical skin preparation with a novel 2 % chlorhexidine gluconate cloth reduces rates of surgical site infection in orthopaedic surgical patients. Orthop Nurs 28:141–145CrossRefPubMedGoogle Scholar
  18. 18.
    Fang A, Hu SS, Endres N et al (2005) Risk factors for infection after spinal surgery. Spine (Phila Pa 1976) 30:1460–1465CrossRefGoogle Scholar
  19. 19.
    Ghobrial GM, Cadotte DW, Williams K Jr. et al (2015) Complications from the use of intrawound vancomycin in lumbar spinal surgery: a systematic review. Neurosurg Focus 39:E11CrossRefPubMedGoogle Scholar
  20. 20.
    Glotzbecker MP, Gomez JA, Miller PE et al (2016) Management of spinal implants in acute pediatric surgical site infections: a multicenter study. Spine Deform 4:277–282CrossRefPubMedGoogle Scholar
  21. 21.
    Hahn F, Zbinden R, Min K (2005) Late implant infections caused by Propionibacterium acnes in scoliosis surgery. Eur Spine J 14:783–788CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Herwaldt LA, Cullen JJ, Scholz D et al (2006) A prospective study of outcomes, healthcare resource utilization, and costs associated with postoperative nosocomial infections. Infect Control Hosp Epidemiol 27:1291–1298CrossRefPubMedGoogle Scholar
  23. 23.
    Kang DG, Holekamp TF, Wagner SC et al (2015) Intrasite vancomycin powder for the prevention of surgical site infection in spine surgery: a systematic literature review. Spine J 15:762–770CrossRefPubMedGoogle Scholar
  24. 24.
    Katthagen BD, Zamani P, Jung W (1992) Effect of surgical draping on bacterial contamination in the surgical field. Z Orthop Ihre Grenzgeb 130:230–235CrossRefPubMedGoogle Scholar
  25. 25.
    Kim DH, Spencer M, Davidson SM et al (2010) Institutional prescreening for detection and eradication of methicillin-resistant staphylococcus aureus in patients undergoing elective orthopaedic surgery. J Bone Joint Surg Am 92:1820–1826CrossRefPubMedGoogle Scholar
  26. 26.
    Klevens RM, Edwards JR, Richards CL Jr. et al (2007) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep 122:160–166CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Koutsoumbelis S, Hughes AP, Girardi FP et al (2011) Risk factors for postoperative infection following posterior lumbar instrumented arthrodesis. J Bone Joint Surg Am 93:1627–1633CrossRefPubMedGoogle Scholar
  28. 28.
    Kraft CN, Fell M (2012) Algorithm for treatment of deep spinal infections and spondylodiscitis with in situ instrumentation. Orthopäde 41:51–57CrossRefPubMedGoogle Scholar
  29. 29.
    Kurtz SM, Lau E, Ong KL et al (2012) Infection risk for primary and revision instrumented lumbar spine fusion in the medicare population. J Neurosurg Spine 17:342–347CrossRefPubMedGoogle Scholar
  30. 30.
    Lall RR, Wong AP, Lall RR et al (2015) Evidence-based management of deep wound infection after spinal instrumentation. J Clin Neurosci 22:238–242CrossRefPubMedGoogle Scholar
  31. 31.
    Lazennec JY, Fourniols E, Lenoir T et al (2011) Infections in the operated spine: update on risk management and therapeutic strategies. Orthop Traumatol Surg Res 97:S107–S116CrossRefPubMedGoogle Scholar
  32. 32.
    Lehner B, Akbar M, Rehnitz C et al (2012) Standards of microbiological diagnostics of spondylodiscitis. Orthopäde 41:702–710CrossRefPubMedGoogle Scholar
  33. 33.
    De Lissovoy G, Fraeman K, Hutchins V et al (2009) Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control 37:387–397CrossRefPubMedGoogle Scholar
  34. 34.
    Madrid E, Urrutia G, Roque Figuls IM et al (2016) Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd009016.pub2 PubMedGoogle Scholar
  35. 35.
    Malamou-Lada H, Zarkotou O, Nikolaides N, Kanellopoulou M, Demetriades D (1999) Wound infections following posterior spinal instrumentation for paralytic scoliosis. Clinical Microbiology and Infection 5(3):135–139CrossRefGoogle Scholar
  36. 36.
    Mangram AJ, Horan TC, Pearson ML et al (1999) Guideline for prevention of surgical site infection, 1999. Centers for disease control and prevention (CDC) hospital infection control practices advisory committee. Am J Infect Control 27:97–132 (quiz 133–134; discussion 196)CrossRefPubMedGoogle Scholar
  37. 37.
    Marimuthu C, Abraham VT, Ravichandran M et al (2016) Antimicrobial prophylaxis in instrumented spinal fusion surgery: a comparative analysis of 24-hour and 72-hour dosages. Asian Spine J 10:1018–1022CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Maruo K, Berven SH (2014) Outcome and treatment of postoperative spine surgical site infections: predictors of treatment success and failure. J Orthop Sci 19:398–404CrossRefPubMedGoogle Scholar
  39. 39.
    Massie JB, Heller JG, Abitbol JJ et al (1992) Postoperative posterior spinal wound infections. Clin Orthop Relat Res.  https://doi.org/10.1097/00003086-199211000-00013 PubMedGoogle Scholar
  40. 40.
    Mehta AI, Babu R, Sharma R et al (2013) Thickness of subcutaneous fat as a risk factor for infection in cervical spine fusion surgery. J Bone Joint Surg Am 95:323–328CrossRefPubMedGoogle Scholar
  41. 41.
    Meng F, Cao J, Meng X (2015) Risk factors for surgical site infections following spinal surgery. J Clin Neurosci 22:1862–1866CrossRefPubMedGoogle Scholar
  42. 42.
    Meyer B, Schaller K, Rohde V et al (1995) The C‑reactive protein for detection of early infections after lumbar microdiscectomy. Acta Neurochir (Wien) 136:145–150CrossRefGoogle Scholar
  43. 43.
    Mirza SK, Deyo RA, Heagerty PJ et al (2008) Development of an index to characterize the “invasiveness” of spine surgery: validation by comparison to blood loss and operative time. Spine (Phila Pa 1976) 33:2651–2661 (discussion 2662)CrossRefGoogle Scholar
  44. 44.
    Nota SP, Braun Y, Ring D et al (2015) Incidence of surgical site infection after spine surgery: what is the impact of the definition of infection? Clin Orthop Relat Res 473:1612–1619CrossRefPubMedGoogle Scholar
  45. 45.
    Olsen MA, Nepple JJ, Riew KD et al (2008) Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Joint Surg Am 90:62–69CrossRefPubMedGoogle Scholar
  46. 46.
    O’toole JE, Eichholz KM, Fessler RG (2009) Surgical site infection rates after minimally invasive spinal surgery. J Neurosurg Spine 11:471–476CrossRefPubMedGoogle Scholar
  47. 47.
    Ousey KJ, Atkinson RA, Williamson JB et al (2013) Negative pressure wound therapy (NPWT) for spinal wounds: a systematic review. Spine J 13:1393–1405CrossRefPubMedGoogle Scholar
  48. 48.
    Palmer CW, Jones CI, Park DK (2016) Postoperative infections of the spine. Semin Spine Surg 28:134–142CrossRefGoogle Scholar
  49. 49.
    Parker SL, Adogwa O, Witham TF et al (2011) Post-operative infection after minimally invasive versus open transforaminal lumbar interbody fusion (TLIF): literature review and cost analysis. Minim Invasive Neurosurg 54:33–37CrossRefPubMedGoogle Scholar
  50. 50.
    Pull Ter Gunne AF, Hosman AJ, Cohen DB et al (2012) A methodological systematic review on surgical site infections following spinal surgery: part 1: risk factors. Spine (Phila Pa 1976) 37:2017–2033CrossRefGoogle Scholar
  51. 51.
    Qadan M, Akca O, Mahid SS et al (2009) Perioperative supplemental oxygen therapy and surgical site infection: a meta-analysis of randomized controlled trials. Arch Surg 144:359–366 (discussion 366–357)CrossRefPubMedGoogle Scholar
  52. 52.
    Radcliff KE, Neusner AD, Millhouse PW et al (2015) What is new in the diagnosis and prevention of spine surgical site infections. Spine J 15:336–347CrossRefPubMedGoogle Scholar
  53. 53.
    Rechtine GR, Bono PL, Cahill D et al (2001) Postoperative wound infection after instrumentation of thoracic and lumbar fractures. J Orthop Trauma 15:566–569CrossRefPubMedGoogle Scholar
  54. 54.
    Richards BR, Emara KM (2001) Delayed infections after posterior TSRH spinal instrumentation for idiopathic scoliosis: revisited. Spine (Phila Pa 1976) 26:1990–1996CrossRefGoogle Scholar
  55. 55.
    Rickert M, Schleicher P, Fleege C et al (2016) Management of postoperative wound infections following spine surgery: first results of a multicenter study. Orthopäde 45:780–788CrossRefPubMedGoogle Scholar
  56. 56.
    Rickert M, Fleege C, Rauschmann M (2017) Behandlungsalgorithmus von Wundinfektionen an der Wirbelsäule mit ersten Ergebnissen einer retrospektiven Studie zur Behandlung von postoperativen Wundinfektionen mit Vakuumsystemen. Wirbelsäule 1:265–272CrossRefGoogle Scholar
  57. 57.
    Savage JW, Anderson PA (2013) An update on modifiable factors to reduce the risk of surgical site infections. Spine J 13:1017–1029CrossRefPubMedGoogle Scholar
  58. 58.
    Schimmel JJP, Horsting PP, De Kleuver M et al (2010) Risk factors for deep surgical site infections after spinal fusion. Eur Spine J 19:1711–1719CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Schuster JM, Rechtine G, Norvell DC et al (2010) The influence of perioperative risk factors and therapeutic interventions on infection rates after spine surgery: a systematic review. Spine (Phila Pa 1976) 35:S125–S137CrossRefGoogle Scholar
  60. 60.
    Stannard JP, Gabriel A, Lehner B (2012) Use of negative pressure wound therapy over clean, closed surgical incisions. Int Wound J 9(Suppl 1):32–39CrossRefPubMedGoogle Scholar
  61. 61.
    Steinberg JP, Braun BI, Hellinger WC et al (2009) Timing of antimicrobial prophylaxis and the risk of surgical site infections: results from the trial to reduce antimicrobial prophylaxis errors. Ann Surg 250:10–16CrossRefPubMedGoogle Scholar
  62. 62.
    Szoke G, Lipton G, Miller F et al (1998) Wound infection after spinal fusion in children with cerebral palsy. J Pediatr Orthop 18:727–733PubMedGoogle Scholar
  63. 63.
    Tanner J, Parkinson H (2006) Double gloving to reduce surgical cross-infection. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd003087 Google Scholar
  64. 64.
    Thomsen T, Tonnesen H, Moller AM (2009) Effect of preoperative smoking cessation interventions on postoperative complications and smoking cessation. Br J Surg 96:451–461CrossRefPubMedGoogle Scholar
  65. 65.
    Ueno M, Saito W, Yamagata M et al (2015) Triclosan-coated sutures reduce wound infections after spinal surgery: a retrospective, nonrandomized, clinical study. Spine J 15:933–938CrossRefPubMedGoogle Scholar
  66. 66.
    Viola RW, King HA, Adler SM et al (1997) Delayed infection after elective spinal instrumentation and fusion. A retrospective analysis of eight cases. Spine (Phila Pa 1976) 22:2444–2450 (discussion 2450–2441)CrossRefGoogle Scholar
  67. 67.
    Weinstein JN, Lurie JD, Tosteson TD et al (2008) Surgical versus nonoperative treatment for lumbar disc herniation: four-year results for the Spine Patient Outcomes Research Trial (SPORT). Spine (Phila Pa 1976) 33:2789–2800CrossRefGoogle Scholar
  68. 68.
    Weinstein JN, Lurie JD, Tosteson TD et al (2009) Surgical compared with nonoperative treatment for lumbar degenerative spondylolisthesis. four-year results in the Spine Patient Outcomes Research Trial (SPORT) randomized and observational cohorts. J Bone Joint Surg Am 91:1295–1304CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Weinstein JN, Tosteson TD, Lurie JD et al (2010) Surgical versus nonoperative treatment for lumbar spinal stenosis four-year results of the Spine Patient Outcomes Research Trial. Spine (Phila Pa 1976) 35:1329–1338CrossRefGoogle Scholar
  70. 70.
    Wright ML, Skaggs DL, Matsumoto H et al (2016) Does the type of metal instrumentation affect the risk of surgical site infection in pediatric scoliosis surgery? Spine Deform 4:206–210CrossRefPubMedGoogle Scholar
  71. 71.
    Yeramaneni S, Robinson C, Hostin R (2016) Impact of spine surgery complications on costs associated with management of adult spinal deformity. Curr Rev Musculoskelet Med 9:327–332CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Burkhard Lehner
    • 1
  • Michael Akbar
    • 1
  • Nicholas A. Beckmann
    • 1
  1. 1.Zentrum für Orthopädie, Unfallchirurgie und ParaplegiologieUniversitätsklinikum HeidelbergHeidelbergDeutschland

Personalised recommendations