Der Orthopäde

, Volume 47, Issue 4, pp 301–309 | Cite as

Realignment surgery in adult spinal deformity

Prevalence and risk factors for proximal junctional kyphosis
  • B. G. Diebo
  • N. V. Shah
  • S. G. Stroud
  • C. B. Paulino
  • F. J. Schwab
  • V. Lafage
Leitthema

Abstract

Although surgical techniques pertaining to adult spinal deformity (ASD) have advanced over the last decade, proximal junctional kyphosis (PJK) is still a complication following surgery for ASD that continues to significantly challenge clinicians. This article aimed to report on the prevalence of PJK as well as enhance understanding of surgically modifiable and non-modifiable risk factors of PJK to guide management of this postoperative complication of ASD. As the understanding of the pathogenesis as well as surgical modifications aimed at reducing the incidence of PJK have advanced, so too should clinicians’ ability to implement more patient-specific operative plans and improve outcomes following realignment surgery for ASD.

Keywords

Epidemiology Patient-specific factors Surgically-modifiable factors Risk stratification Outcomes 

Abbreviations

ASD

Adult spinal deformity

ASD-FI

Adult spinal deformity frailty index

BMD

Bone mineral density

BMI

Body mass index

CoCrMRC

Cobalt chromium multi-rod construct

HRT

Head repositioning test

LL

Lumbar lordosis

mFI

Modified frailty index

miniBESTest

Mini-balance evaluation systems test

NIS

Nationwide Inpatient Sample

NSQIP

National surgical quality improvement program

PI

Pelvic incidence

PI-LL

Pelvic incidence minus lumbar lordosis

PJF

Proximal junction failure

PJK

Proximal junctional kyphosis

PT

Pelvic tilt

ROM

Range of motion

SRA

Scoliosis Research Society

SVA

Sagittal vertical axis

TiTRC

Titanium two-rod construct

TK

Thoracic kyphosis

TUG test

Timed Up and Go test

UIV

Upper instrumented vertebra

VAS

Visual analog scale

Operative Korrektur von Wirbelsäulendeformitäten des Erwachsenen

Prävalenz und Risikofaktoren der proximalen junktionalen Kyphose

Zusammenfassung

Obwohl sich die chirurgischen Techniken in Bezug auf die Behandlung von Wirbelsäulendeformitäten des Erwachsenen („adult spinal deformities“, ASD) in den letzten Dekaden weiterentwickelt haben, stellt die proximale junktionale Kyphose (PJK) als Komplikation nach operativer Versorgung der ASD eine große Herausforderung für den Wirbelsäulenchirurgen dar. Ziel dieser Übersichtsarbeit ist es, die Prävalenz der PJK darzustellen und das Verständnis für chirurgisch beeinflussbare sowie chirurgisch nicht beeinflussbare Risikofaktoren der PJK zu erhöhen, damit diese relevante postoperative Komplikation der ASD besser eingeordnet und behandelt werden kann. Da das Verständnis für die Pathogenese der PJK wie auch die chirurgischen Strategien mit dem Ziel, die Häufigkeit der postoperativen PJK zu reduzieren, fortgeschritten sind, muss nun auch die Fähigkeit der Kliniker gefordert werden, die patientenspezifische operative Planung in der Behandlung zu implementieren, um das postoperative Ergebnis nach der Wiederherstellung des sagittalen Profils bei ASD zu verbessern.

Schlüsselwörter

Epidemiologie Patientenspezifische Faktoren Chirurgisch beeinflussbare Faktoren Risikostratifizierung Ergebnisse 

Notes

Compliance with ethical guidelines

Conflict of interest

C.B. Paulino is a paid presenter or speaker for DePuy, A Johnson & Johnson Company. F.J. Schwab receives research support from DePuy, is a paid consultant, presenter or speaker for K2M, Medicrea, Medtronic, Medtronic Sofamor Danek, Nuvasive, and Zimmer, owns stock or stock options in Nemaris INC, and is a board or committee member of the Scoliosis Research Society, Spine Deformity, and International Spine Society Group (Vice President). V. Lafage is a paid presenter or speaker for DePuy and Medtronic, receives research support from DePuy, is a board or committee member of the International Spine Study Group, Scoliosis Research Society, and Nemaris INC, and owns stock or stock options in Nemaris INC. B.G. Diebo, N.V. Shah and S.G. Stroud declare that they have no competing interests.

This article represents a review of the literature, including original studies of human or animal subjects performed by their respective authors, in order to complete this article. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Where applicable, informed consent was obtained from all individual participants included in the respective studies.

References

  1. 1.
    Scoliosis Research Society (2016) Final program. Scoliosis Research Society 51st Annual Meeting. Scoliosis Research Society, PragueGoogle Scholar
  2. 2.
    Amabile C, Moal B, Chtara OA et al (2016) Estimation of spinopelvic muscles’ volumes in young asymptomatic subjects: a quantitative analysis. Surg Radiol Anat 39:1–11Google Scholar
  3. 3.
    Bernstein P, Hentschel S, Platzek I et al (2012) The assessment of the postoperative spinal alignment: MRI adds up on accuracy. Eur Spine J 21:733–738CrossRefPubMedGoogle Scholar
  4. 4.
    Bess S, Harris JE, Turner AWL et al (2016) The effect of posterior polyester tethers on the biomechanics of proximal junctional kyphosis: a finite element analysis. J Neurosurg Spine 26(1):125–133.  https://doi.org/10.3171/2016.6.SPINE151477 CrossRefPubMedGoogle Scholar
  5. 5.
    Bess S, Protopsaltis TS, Lafage V et al (2016) Clinical and radiographic evaluation of adult spinal deformity. Clin Spine Surg 29:6–16CrossRefPubMedGoogle Scholar
  6. 6.
    Bhagat S, Vozar V, Lutchman L et al (2013) Morbidity and mortality in adult spinal deformity surgery: Norwich Spinal Unit experience. Eur Spine J 22(Suppl 1):S42–S46CrossRefPubMedGoogle Scholar
  7. 7.
    Cammarata M, Aubin C‑É, Wang X, Mac-Thiong J‑M (2014) Biomechanical risk factors for proximal junctional kyphosis: a detailed numerical analysis of surgical instrumentation variables. Spine (Phila Pa 1976) 39:E500–E507CrossRefGoogle Scholar
  8. 8.
    DeWald CJ, Stanley T (2006) Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine (Phila Pa 1976) 31:S144–S151CrossRefGoogle Scholar
  9. 9.
    Diebo BG, Henry J, Lafage V, Berjano P (2015) Sagittal deformities of the spine: factors influencing the outcomes and complications. Eur Spine J 24:3–15CrossRefGoogle Scholar
  10. 10.
    Diebo BG, Jalai CM, Challier V et al (2017) Novel index to quantify the risk of surgery in the setting of adult spinal deformity: a study on 10,912 patients from the Nationwide Inpatient Sample. Clin Spine Surg 30(7):E993–E999.  https://doi.org/10.1097/BSD.0000000000000509 CrossRefPubMedGoogle Scholar
  11. 11.
    Dugailly P‑M, De Santis R, Tits M et al (2015) Head repositioning accuracy in patients with neck pain and asymptomatic subjects: concurrent validity, influence of motion speed, motion direction and target distance. Eur Spine J 24:2885–2891CrossRefPubMedGoogle Scholar
  12. 12.
    Durrani A, Jain V, Desai R et al (2012) Could junctional problems at the end of a long construct be addressed by providing a graduated reduction in stiffness? Spine (Phila Pa 1976) 37:E16–E22CrossRefGoogle Scholar
  13. 13.
    Endo K, Suzuki H, Nishimura H et al (2012) Sagittal lumbar and pelvic alignment in the standing and sitting positions. J Orthop Sci 17:682–686CrossRefPubMedGoogle Scholar
  14. 14.
    Gautschi OP, Corniola MV, Joswig H et al (2015) The timed up and go test for lumbar degenerative disc disease. J Clin Neurosci 22:1943–1948CrossRefPubMedGoogle Scholar
  15. 15.
    Gelb DE, Lenke LG, Bridwell KH et al (1995) An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers. Spine (Phila Pa 1976) 20:1351–1358CrossRefGoogle Scholar
  16. 16.
    Glassman SD (2016) Risk Stratification Task Force update. https://www.srs.org/newsletter/issues/march-2016/risk-stratification-task-force-update/full-article. Accessed 28 Apr 2017Google Scholar
  17. 17.
    Glassman SD, Coseo MP, Carreon LY (2016) Sagittal balance is more than just alignment: why PJK remains an unresolved problem. Scoliosis Spinal Disord 11:1.  https://doi.org/10.1186/s13013-016-0064-0 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Glattes RC, Bridwell KH, Lenke LG et al (2005) Proximal junctional kyphosis in adult spinal deformity following long instrumented posterior spinal fusion: incidence, outcomes, and risk factor analysis. Spine (Phila Pa 1976) 30:1643–1649CrossRefGoogle Scholar
  19. 19.
    Good CR, Auerbach JD, O’Leary PT, Schuler TC (2011) Adult spine deformity. Curr Rev Musculoskelet Med 4:159–167CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gupta MC, Diebo BG, Protopsaltis TS et al (2016) Bimodal incidence and causes of Proximal Junctional Kyphosis (PJK) in Adult Spinal Deformity (ASD). Spine J 16:327CrossRefGoogle Scholar
  21. 21.
    Han S, Hyun S‑J, Kim K‑J et al (2017) Rod stiffness as a risk factor of proximal junctional kyphosis after adult spinal deformity surgery: comparative study between cobalt chrome multiple-rod constructs and titanium alloy two-rod constructs. Spine J 17(7):962–968CrossRefPubMedGoogle Scholar
  22. 22.
    Hartmann S, Hegewald AA, Tschugg A et al (2016) Analysis of a performance-based functional test in comparison with the visual analog scale for postoperative outcome assessment after lumbar spondylodesis. Eur Spine J 25:1620–1626CrossRefPubMedGoogle Scholar
  23. 23.
    Hey HWD, Lau ET-C, Tan K‑A et al (2017) Lumbar spine alignment in six common postures: an ROM analysis with implications for deformity correction. Spine (Phila Pa 1976) 42:1447–1455CrossRefGoogle Scholar
  24. 24.
    Hyun S‑J, Kim YJ, Rhim S‑C (2016) Patients with proximal junctional kyphosis after stopping at thoracolumbar junction have lower muscularity, fatty degeneration at the thoracolumbar area. Spine J 16:1095–1101CrossRefPubMedGoogle Scholar
  25. 25.
    Iosa M, Picerno P, Paolucci S, Morone G (2016) Wearable inertial sensors for human movement analysis. Expert Rev Med Devices 13:641–659CrossRefPubMedGoogle Scholar
  26. 26.
    Jain A, Naef F, Lenke LG et al (2016) Incidence of proximal junctional kyphosis in patients with adult spinal deformity fused to the pelvis: analysis of 198 patients. Spine J 16:311–312CrossRefGoogle Scholar
  27. 27.
    Jolivet E (2007) Modélisation biomécanique de la hanche dans le risque de fracture du fémur proximal. Arts et Métiers ParisTech, Paris (NNT: 2007ENAM0019)Google Scholar
  28. 28.
    Jolivet E, Daguet E, Pomero V et al (2008) Volumic patient-specific reconstruction of muscular system based on a reduced dataset of medical images. Comput Methods Biomech Biomed Engin 11:281–290CrossRefPubMedGoogle Scholar
  29. 29.
    Jolivet E, Dion E, Rouch P et al (2014) Skeletal muscle segmentation from MRI dataset using a model-based approach. Comput Methods Biomech Biomed Eng Imaging Vis 2:138–145CrossRefGoogle Scholar
  30. 30.
    Katzman WB, Wanek L, Shepherd JA, Sellmeyer DE (2010) Age-related hyperkyphosis: its causes, consequences, and management. J Orthop Sports Phys Ther 40:352–360CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kebaish KM, Martin CT, O’Brien JR et al (2013) Use of vertebroplasty to prevent proximal junctional fractures in adult deformity surgery: a biomechanical cadaveric study. Spine J 13:1897–1903CrossRefPubMedGoogle Scholar
  32. 32.
    Kim DYK, Kim JY, Kim DYK et al (2017) Risk factors of proximal junctional kyphosis after multilevel fusion surgery: more than 2 years follow-up data. J Korean Neurosurg Soc 60:174–180CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kim HJ, Bridwell KH, Lenke LG et al (2014) Patients with proximal junctional kyphosis requiring revision surgery have higher postoperative lumbar lordosis and larger sagittal balance corrections. Spine (Phila Pa 1976) 39:E576–E580CrossRefGoogle Scholar
  34. 34.
    Kim HJ, Iyer S (2016) Proximal junctional kyphosis. J Am Acad Orthop Surg 24:318–326CrossRefPubMedGoogle Scholar
  35. 35.
    Kim HJ, Yagi M, Nyugen J et al (2012) Combined anterior-posterior surgery is the most important risk factor for developing proximal junctional kyphosis in idiopathic scoliosis. Clin Orthop Relat Res 470:1633–1639CrossRefPubMedGoogle Scholar
  36. 36.
    Kim YJ, Bridwell KH, Lenke LG et al (2008) Proximal junctional kyphosis in adult spinal deformity after segmental posterior spinal instrumentation and fusion: minimum five-year follow-up. Spine (Phila Pa 1976) 33:2179–2184CrossRefGoogle Scholar
  37. 37.
    Lafage R, Bess S, Glassman S et al (2017) Virtual modeling of postoperative alignment after adult spinal deformity surgery helps predict associations between compensatory spinopelvic alignment changes, overcorrection, and proximal junctional kyphosis. Spine (Phila Pa 1976) 42:E1119–E1125CrossRefGoogle Scholar
  38. 38.
    Lafage R, Line B, Liabaud B et al (2016) Orientation of the upper instrumented segment influences proximal junctional disease following Adult Spinal Deformity (ASD) surgery. Scoliosis Res. Soc, Prague, 21.–24.09.2016 Elsevier, Prague, p S356Google Scholar
  39. 39.
    Lafage R, Schwab F, Glassman S et al (2017) Age-adjusted alignment goals have the potential to reduce PJK. Spine (Phila Pa 1976) 42:1275–1282CrossRefGoogle Scholar
  40. 40.
    Lafage R, Schwab FJ, Bess S et al (2015) Redefining radiographic thresholds for junctional kyphosis pathologies. Spine J 15:216CrossRefGoogle Scholar
  41. 41.
    Lau D, Clark AJ, Scheer JK et al (2014) Proximal junctional kyphosis and failure following spinal deformity surgery: a systematic review of the literature as a background to classification development. Spine (Phila Pa 1976) 39:2093–2102CrossRefGoogle Scholar
  42. 42.
    Lazennec JY, Brusson A, Rousseau MA (2013) Lumbar-pelvic-femoral balance on sitting and standing lateral radiographs. Orthop Traumatol Surg Res 99:S87–S103CrossRefPubMedGoogle Scholar
  43. 43.
    Lee ES, Ko CW, Suh SW et al (2014) The effect of age on sagittal plane profile of the lumbar spine according to standing, supine, and various sitting positions. J Orthop Surg Res 9:11.  https://doi.org/10.1186/1749-799X-9-11 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lemay J‑F, Gagnon D, Duclos C et al (2013) Influence of visual inputs on quasi-static standing postural steadiness in individuals with spinal cord injury. Gait Posture 38:357–360CrossRefPubMedGoogle Scholar
  45. 45.
    Leven DM, Lee NJ, Kothari P et al (2016) Frailty index is a significant predictor of complications and mortality after surgery for adult spinal deformity. Spine (Phila Pa 1976) 41:E1394–E1401CrossRefGoogle Scholar
  46. 46.
    Liu F‑Y, Wang T, Yang S‑D et al (2016) Incidence and risk factors for proximal junctional kyphosis: a meta-analysis. Eur Spine J 25:2376–2383CrossRefPubMedGoogle Scholar
  47. 47.
    Maruo K, Ha Y, Inoue S et al (2013) Predictive factors for proximal junctional kyphosis in long fusions to the sacrum in adult spinal deformity. Spine (Phila Pa 1976) 38:E1469–E1476CrossRefGoogle Scholar
  48. 48.
    Meakin JR, Gregory JS, Aspden RM et al (2009) The intrinsic shape of the human lumbar spine in the supine, standing and sitting postures: characterization using an active shape model. J Anat 215:206–211CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Metzger MF, Robinson ST, Svet MT et al (2016) Biomechanical analysis of the proximal adjacent segment after multilevel instrumentation of the thoracic spine: do hooks ease the transition? Global Spine J 6:335–343CrossRefPubMedGoogle Scholar
  50. 50.
    Miller E, Jain A, Daniels AH et al (2016) Assessment of a novel Adult Spinal Deformity (ASD) Frailty Index (ASD-FI) to assist with risk stratification for ASD surgery. Spine J 16:365CrossRefGoogle Scholar
  51. 51.
    Moal B, Bronsard N, Raya JG et al (2015) Volume and fat infiltration of spino-pelvic musculature in adults with spinal deformity. World J Orthop 6:727–737CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Nankaku M, Tsuboyama T, Akiyama H et al (2013) Preoperative prediction of ambulatory status at 6 months after total hip arthroplasty. Phys Ther 93:88–93CrossRefPubMedGoogle Scholar
  53. 53.
    Nguyen NLM, Kong CY, Hart RA (2016) Proximal junctional kyphosis and failure—diagnosis, prevention, and treatment. Curr Rev Musculoskelet Med 9:299–308CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    O’Leary PT, Bridwell KH, Lenke LG et al (2009) Risk factors and outcomes for catastrophic failures at the top of long pedicle screw constructs: a matched cohort analysis performed at a single center. Spine (Phila Pa 1976) 34:2134–2139CrossRefGoogle Scholar
  55. 55.
    Park S‑J, Lee C‑S, Chung S‑S et al (2017) Different risk factors of proximal junctional kyphosis and proximal junctional failure following long instrumented fusion to the sacrum for adult spinal deformity: survivorship analysis of 160 patients. Neurosurgery 80:279–286PubMedGoogle Scholar
  56. 56.
    Patel A, Varghese J, Liabaud B et al (2016) Supine radiographs outperform standing radiographs in predicting postoperative alignment of unfused thoracic segments. Spine J 16:370–371CrossRefGoogle Scholar
  57. 57.
    Paternostre F, Charles YP, Sauleau EA, Steib J‑P (2017) Cervical sagittal alignment in adult hyperkyphosis treated by posterior instrumentation and in situ bending. Orthop Traumatol Surg Res 103:53–59CrossRefPubMedGoogle Scholar
  58. 58.
    Protopsaltis T, Bronsard N, Soroceanu A et al (2017) Cervical sagittal deformity develops after PJK in adult thoracolumbar deformity correction: radiographic analysis utilizing a novel global sagittal angular parameter, the CTPA. Eur Spine J 26:1111–1120CrossRefPubMedGoogle Scholar
  59. 59.
    Scheer JK, Osorio JA, Smith JS et al (2016) Development of validated computer based pre-operative predictive model for Proximal Junction Failure (PJF) or clinically significant PJK with 86 % accuracy based on 510 ASD patients with 2‑year follow-up. Spine (Phila Pa 1976) 41:1–10CrossRefGoogle Scholar
  60. 60.
    Schwab FJ, Hawkinson N, Lafage V et al (2012) Risk factors for major peri-operative complications in adult spinal deformity surgery: a multi-center review of 953 consecutive patients. Eur Spine J 21:2603–2610CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Schwab FJ, Lafage V, Farcy JP et al (2008) Predicting outcome and complications in the surgical treatment of adult scoliosis. Spine (Phila Pa 1976) 33:2243–2247CrossRefGoogle Scholar
  62. 62.
    Sethi RK, Pong RP, Leveque J‑C et al (2014) The Seattle Spine Team approach to adult deformity surgery: a systems-based approach to perioperative care and subsequent reduction in perioperative complication rates. Spine Deform 2:95–103CrossRefPubMedGoogle Scholar
  63. 63.
    da Silva RA, Vieira ER, Fernandes KBP et al (2017) People with chronic low back pain have poorer balance than controls in challenging tasks. Disabil Rehabil 10:1–7.  https://doi.org/10.1080/09638288.2017.1294627 Google Scholar
  64. 64.
    Smith JS, Shaffrey CI, Berven S et al (2009) Operative versus nonoperative treatment of leg pain in adults with scoliosis: a retrospective review of a prospective multicenter database with two-year follow-up. Spine (Phila Pa 1976) 34:1693–1698CrossRefGoogle Scholar
  65. 65.
    Smith MW, Annis P, Lawrence BD et al (2013) Early proximal junctional failure in patients with preoperative sagittal imbalance. Evid Based Spine Care J 4:163–164CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Terracciano C, Celi M, Lecce D et al (2013) Differential features of muscle fiber atrophy in osteoporosis and osteoarthritis. Osteoporos Int 24:1095–1100CrossRefPubMedGoogle Scholar
  67. 67.
    Theologis AA, Burch S (2015) Prevention of acute proximal junctional fractures after long thoracolumbar posterior fusions for adult spinal deformity using 2‑level cement augmentation at the upper instrumented vertebra and the vertebra 1 level proximal to the upper instrumented verteb. Spine (Phila Pa 1976) 40:1516–1526CrossRefGoogle Scholar
  68. 68.
    Theologis AA, Miller L, Callahan M et al (2016) The economic impact of revision surgery for proximal junctional failure after adult spinal deformity surgery. Spine (Phila Pa 1976) 41(16):E964–72CrossRefGoogle Scholar
  69. 69.
    Challier V, Boissiere L, Diebo BG, Lafage V, Lafage R, Castelain JE, Ghailane S, Bouloussa, Obeid I, Gille O (2017) The Dubousset Functional Test: Introducing a new Assessment to Evaluate multi-modal Balance in the setting of Adult Spine Deformity. Unpubl. DataGoogle Scholar
  70. 70.
    Watanabe K, Lenke LG, Bridwell KH et al (2010) Proximal junctional vertebral fracture in adults after spinal deformity surgery using pedicle screw constructs: analysis of morphological features. Spine (Phila Pa 1976) 35:138–145CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • B. G. Diebo
    • 1
  • N. V. Shah
    • 1
  • S. G. Stroud
    • 1
  • C. B. Paulino
    • 1
  • F. J. Schwab
    • 2
  • V. Lafage
    • 2
  1. 1.Department of Orthopaedic SurgeryState University of New York, Downstate Medical CenterBrooklynUSA
  2. 2.Spine ServiceHospital for Special SurgeryNew YorkUSA

Personalised recommendations