Skip to main content
Log in

Navigation bei lumbalen Eingriffen: Wann ist sie sinnvoll?

Navigation in lumbar spinal surgery: When is it useful?

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die spinale Navigation hat sich seit ihren Anfängen Mitte der 1990er-Jahre stark weiterentwickelt und ist mittlerweile bei Operationen an der Lendenwirbelsäule (LWS) weit verbreitet. Trotzdem hat sich die Technik noch nicht als Standard durchgesetzt.

Anwendungsmöglichkeiten

Zusätzlich zur klassischen Anwendung bei lumbalen Pedikelschraubeninstrumentationen lässt sich die Navigationstechnik, insbesondere in Kombination mit der intraoperativen 3‑D-Bildgebung, in einem breiten Indikationsspektrum und bei sämtlichen LWS-Zugängen nutzen. Besonders hilfreich ist die Navigationstechnik bei minimalinvasiven Operationen. Das Konzept der „total navigation“ beinhaltet einen effizienten Einsatz der Technik vom Hautschnitt an und zielt auf eine komplette Elimination der Strahlenexposition für das Operationsteam.

Vorteile und Pitfalls

Hohe Genauigkeit und geringe Strahlenbelastung des Operationsteams sind unstrittige Vorteile navigierter Operationen, während Zeitersparnis und ökonomischer Nutzen noch belegt werden müssen. Regelmäßiger Einsatz und ein standardisierter Workflow sind wesentlich für eine sichere und effektive Nutzung der lumbalen Navigation.

Zusammenfassung

Die lumbale Navigationstechnik hat bereits heute einen hohen Stellenwert, trotzdem erfordert die komplexe Technik ein intensives Training. Mit Verbesserung des Nutzerkomforts und der Bildqualität wird sich die spinale Navigation in Zukunft noch weiterverbreiten.

Abstract

Background

Spinal navigation has evolved greatly since its implementation in the mid-1990s and is now widely used in lumbar spine surgery. However, navigation is not yet accepted as a standard technique.

Applications

In addition to the classic use in lumbar pedicle screw instrumentation, navigation technology, especially in combination with intraoperative 3D imaging, can be applied in a wide range of indications and in all lumbar approaches. The technology is particularly helpful in minimally invasive operations. The concept of “total navigation” stands for an efficient use of the technique from skin incision on and aims at complete elimination of radiation exposure for the surgical team.

Advantages and pitfalls

High accuracy and low radiation exposure of the OR team are indisputable advantages of navigated operations, while time savings and economic benefits are yet to be demonstrated. Regular use and standardized workflow are essential for the safe and effective application of lumbar navigation.

Summary

Currently, lumbar navigation technology is already of great importance, yet the complex technology requires intensive training. With improved user comfort and image quality, spinal navigation will continue to spread in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Abbreviations

ACS-NSQIP:

American College of Surgeons National Surgical Quality Improvement Program

ALIF :

„Anterior lumbar interbody fusion“

AO :

Arbeitsgemeinschaft für Osteosynthesefragen

ASIA :

American Spinal Injuries Association

BWK :

Brustwirbelkörper

CT :

Computertomographie

K-Draht:

Kirschner-Draht

KM :

Kontrastmittel

LWK :

Lendenwirbelkörper

LWS :

Lendenwirbelsäule

MALT :

„Mucosa associated lymphoid tissue“

MIS :

„Minimally invasive surgery“

MRT :

Magnetresonanztomographie

OLIF :

„Oblique lateral interbody fusion“

OR :

Odds Ratio

PLF :

„Posterolateral lumbar fusion“

PLIF :

„Posterior lumbar interbody fusion“

TLIF :

„Transforaminal lumbar interbody fusion“

XLIF :

„Extreme lateral interbody fusion“

Literatur

  1. Amiot LP, Labelle H, DeGuise JA et al (1995) Computer-assisted pedicle screw fixation. A feasibility study. Spine 20:1208–1212

    Article  CAS  PubMed  Google Scholar 

  2. Cardali S, Cacciola F, Raffa G et al (2018) Navigated minimally invasive unilateral laminotomy with crossover for intraoperative prediction of outcome in degenerative lumbar stenosis. J Craniovertebr Junction Spine 9:107. https://doi.org/10.4103/jcvjs.JCVJS_45_18

    Article  PubMed  PubMed Central  Google Scholar 

  3. Costa F, Tosi G, Attuati L et al (2016) Radiation exposure in spine surgery using an image-guided system based on intraoperative cone-beam computed tomography: analysis of 107 consecutive cases. J Neurosurg Spine 25:654–659. https://doi.org/10.3171/2016.3.SPINE151139

    Article  PubMed  Google Scholar 

  4. Drazin D, Al-Khouja L, Shweikeh F et al (2015) Economics of image guidance and navigation in spine surgery. Surg Neurol Int 6:323. https://doi.org/10.4103/2152-7806.159381

    Article  Google Scholar 

  5. Faundez A, Byrne F, Sylvestre C et al (2015) Pedicle subtraction osteotomy in the thoracic spine and thoracolumbar junction: a retrospective series of 28 cases. Eur Spine J 24:42–48. https://doi.org/10.1007/s00586-014-3658-3

    Article  Google Scholar 

  6. Hecht N, Kamphuis M, Czabanka M et al (2016) Accuracy and workflow of navigated spinal instrumentation with the mobile AIRO® CT scanner. Eur Spine J 25:716–723. https://doi.org/10.1007/s00586-015-3814-4

    Article  PubMed  Google Scholar 

  7. Hlubek RJ, Theodore N, Chang SW (2016) CT/MRI fusion for vascular mapping and navigated resection of a paraspinal tumor. World Neurosurg 89:732.e7–732.e12. https://doi.org/10.1016/j.wneu.2016.01.091

    Article  Google Scholar 

  8. Hussain I, Navarro-Ramirez R, Lang G, Härtl R (2018) 3D navigation-guided resection of giant ventral cervical intradural schwannoma with 360-degree stabilization. Clin Spine Surg 31:E257–E265. https://doi.org/10.1097/BSD.0000000000000511

    Article  PubMed  Google Scholar 

  9. Janssen I, Lang G, Navarro-Ramirez R et al (2017) Can fan-beam interactive computed tomography accurately predict indirect decompression in minimally invasive spine surgery fusion procedures? World Neurosurg 107:322–333. https://doi.org/10.1016/j.wneu.2017.07.167

    Article  PubMed  Google Scholar 

  10. Kim TT, Drazin D, Shweikeh F et al (2014) Clinical and radiographic outcomes of minimally invasive percutaneous pedicle screw placement with intraoperative CT (O-arm) image guidance navigation. Neurosurg Focus 36:E1. https://doi.org/10.3171/2014.1.FOCUS13531

    Article  PubMed  Google Scholar 

  11. Kothe R, Richter M (2018) Relevance of spinal navigation in reconstructive surgery of the cervical spine. Orthopade 47:518–525. https://doi.org/10.1007/s00132-018-3568-x

    Article  CAS  PubMed  Google Scholar 

  12. Laine T, Schlenzka D, Mäkitalo K et al (1997) Improved accuracy of pedicle screw insertion with computer-assisted surgery. A prospective clinical trial of 30 patients. Spine 22:1254–1258

    Article  CAS  PubMed  Google Scholar 

  13. Lian X, Navarro-Ramirez R, Berlin C et al (2016) Total 3D Airo® navigation for minimally invasive transforaminal lumbar Interbody fusion. Biomed Res Int. https://doi.org/10.1155/2016/5027340

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mundinger F, Birg W, Klar M (1978) Computer-assisted stereotactic brain operations by means including computerized axial tomography. Appl Neurophysiol 41:169–182

    CAS  PubMed  Google Scholar 

  15. Navarro-Ramirez R, Lang G, Lian X et al (2017) Total navigation in spine surgery; a concise guide to eliminate fluoroscopy using a portable Intraoperative computed tomography 3‑dimensional navigation system. World Neurosurg 100:325–335. https://doi.org/10.1016/j.wneu.2017.01.025

    Article  PubMed  Google Scholar 

  16. Nolte LP, Visarius H, Arm E et al (1995) Computer-aided fixation of spinal implants. Comput Aided Surg 1:88–93. https://doi.org/10.3109/10929089509106319

    Article  CAS  Google Scholar 

  17. Nooh A, Aoude A, Fortin M et al (2017) Use of computer assistance in lumbar fusion surgery: analysis of 15 222 patients in the ACS-NSQIP database. Global Spine J 7:617–623. https://doi.org/10.1177/2192568217699193

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oertel MF, Hobart J, Stein M et al (2011) Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O‑arm radiographic imaging. J Neurosurg Spine 14:532–536. https://doi.org/10.3171/2010.10.SPINE091032

    Article  PubMed  Google Scholar 

  19. Schwarzenbach O, Berlemann U, Jost B et al (1997) Accuracy of computer-assisted pedicle screw placement: An in vivo computed tomography analysis. Spine 22:452–458. https://doi.org/10.1097/00007632-199702150-00020

    Article  CAS  PubMed  Google Scholar 

  20. Shin BJ, James AR, Njoku IU, Härtl R (2012) Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine 17:113–122. https://doi.org/10.3171/2012.5.SPINE11399

    Article  PubMed  Google Scholar 

  21. Steinmetz MP, Mroz TE, Krishnaney A, Modic M (2009) Conventional versus digital radiographs for intraoperative cervical spine-level localization: a prospective time and cost analysis. Spine J. https://doi.org/10.1016/j.spinee.2009.07.004

    Article  PubMed  Google Scholar 

  22. Xiao R, Miller JA, Sabharwal NC et al (2017) Clinical outcomes following spinal fusion using an intraoperative computed tomographic 3D imaging system. J Neurosurg Spine 26:628–637. https://doi.org/10.3171/2016.10.SPINE16373.628

    Article  PubMed  Google Scholar 

  23. Yang BP, Wahl MM, Idler CS (2012) Percutaneous lumbar pedicle screw placement aided by computer-assisted fluoroscopy-based navigation: perioperative results of a prospective, comparative, multicenter study. Spine. https://doi.org/10.1097/BRS.0b013e31825c05cd

    Article  PubMed  Google Scholar 

  24. Zausinger S, Scheder B, Uhl E et al (2009) Intraoperative computed tomography with integrated navigation system in spinal stabilizations. Spine 34:2919–2926. https://doi.org/10.1097/BRS.0b013e3181b77b19

    Article  PubMed  Google Scholar 

  25. Zhang YH, White I, Potts E et al (2017) Comparison Perioperative Factors During Minimally Invasive Pre-Psoas Lateral Interbody Fusion of the Lumbar Spine Using Either Navigation or Conventional Fluoroscopy. Glob Spine J 7:657–663. https://doi.org/10.1177/2192568217716149

    Article  Google Scholar 

Download references

Danksagung

Die Autoren bedanken sich bei Prof. Dr. Roger Härtl, Director of Spinal Surgery, Weill Cornell Brain and Spine Center, New York, USA. Er stellte freundlicherweise das Material für zwei klinische Fälle zur Demonstration der Anwendungsmöglichkeiten der Navigation zur Verfügung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Schöller.

Ethics declarations

Interessenkonflikt

K. Schöller gibt an, dass er Vortragshonorare der Firmen Medicon und Baxter erhielt. F. Jablawi gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schöller, K., Jablawi, F. Navigation bei lumbalen Eingriffen: Wann ist sie sinnvoll?. Orthopäde 48, 59–68 (2019). https://doi.org/10.1007/s00132-018-03671-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-018-03671-9

Schlüsselwörter

Keywords

Navigation