Skip to main content

Advertisement

Log in

Accurate placement of cervical pedicle screws using 3D-printed navigational templates

An improved technique with continuous image registration

Genaue Platzierung zervikaler Pedikelschrauben mittels Navigationsschablone aus dem 3‑D-Drucker

Verbessertes Verfahren mit kontinuierlicher Bildregistrierung

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Abstract

Objective

Accurate placement of cervical pedicle screws remains a surgical challenge. This study aimed to test the feasibility of using a novel three-dimensional (3D-)printed navigational template to overcome this challenge.

Methods

Cervical spines were scanned using computed tomography (CT). A 3D model of the cervical spines was created. The screw trajectory was designed to pass through the central axis of the pedicle. Thereafter, a navigational template was designed by removing the soft tissue from the bony surface in the 3D model. A 3D printer was used to print the navigational template. The screws were then placed in the cadavers following CT scanning. The 3D model of the designed trajectory and the placed screws were registered. The coordinates of the entry and exit points of the designed trajectory and the actual trajectory were recorded. The numbers of qualified points that met the different degrees of accuracy were compared using a χ2 test.

Results

A total of 158 screws were placed. Five screws breached the pedicle cortex with a distance <2 mm. There was no significant difference between the pre- and postoperative entry points with a degree of accuracy ≥1.7 mm (P = 0.131). Meanwhile, there was no significant difference between the pre- and postoperative exit points with degrees of accuracy ≥6.4 mm (P = 0.071).

Conclusion

A navigational template can be designed by removing the soft tissue from the bony surface in a CT-generated 3D model. This guiding tool may effectively prevent intraoperative drifting and accurately places cervical pedicle screws.

Zusammenfassung

Ziel der Arbeit

Die genaue Platzierung zervikaler Pedikelschrauben bleibt eine chirurgische Herausforderung. Die vorliegende Studie hatte zum Ziel, die Eignung einer neuartigen Navigationsschablone zu testen, die mit dem dreidimensionalen (3-D-)Drucker hergestellt wurde, um dieses Problem zu lösen.

Methoden

Es wurden Aufnahmen der Halswirbelsäule (HWS) mittels Computertomographie (CT) angefertig. Dann wurde ein 3‑D-Modell der HWS erzeugt. Der Weg der Schraube wurde so geplant, dass er durch die Zentralachse des Pedikels verlaufen sollte. Danach wurde eine Navigationsschablone hergestellt, indem die Weichteile von der knöchernen Oberfläche im 3‑D-Modell entfernt wurden. Ein 3‑D-Drucker wurde zur Herstellung der Navigationsschablone verwendet. Nach Erstellung der CT-Aufnahmen wurden die Schrauben dann in die Leichenpräparate gesetzt. Das 3‑D-Modell des geplanten Verlaufs und die Platzierung der Schrauben wurden dokumentiert. Die Koordinaten der Ein- und Austrittspunkte des geplanten Verlaufs und der tatsächliche Verlauf wurden aufgezeichnet. Unter Verwendung eines χ2-Tests wurde die Anzahl qualifizierter Punkte verglichen, die den verschiedenen Graden an Genauigkeit entsprachen.

Ergebnisse

Insgesamt wurden 158 Schrauben platziert. Fünf Schrauben perforierten die Pedikelkortikalis um <2 mm. Es bestand kein signifikanter Unterschied zwischen prä- und postoperativen Eintrittspunkten bei einem Grad der Genauigkeit ≥1,7 mm (p = 0,131). Auch lag kein signifikanter Unterschied zwischen den prä- und postoperativen Austrittspunkten bei einem Grad der Genauigkeit ≥6,4 mm (p = 0,071) vor.

Schlussfolgerung

Eine Navigationsschablone kann durch Entfernung der Weichteile von der knöchernen Oberfläche in einem CT-basierten 3‑D-Modell hergestellt werden. Diese Leitschiene ermöglicht, dass eine intraoperative Verschiebung wirksam verhindert wird und die zervikalen Pedikelschrauben genau gesetzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

CT:

Computed tomography

DICOM:

Digital Imaging and Communications in Medicine

HU:

Hounsfield unit

K-wire:

Kirschner wire

STL:

Stereolithography

References

  1. Richter M, Schmidt R, Claes L, Puhl W, Wilke HJ (2002) Posterior atlantoaxial fixation: biomechanical in vitro comparison of six different techniques. Spine 27:1724–1732

    Article  PubMed  Google Scholar 

  2. Resnick DK, Lapsiwala S, Trost GR (2002) Anatomic suitability of the C1-C2 complex for pedicle screw fixation. Spine 27:1494–1498

    Article  PubMed  Google Scholar 

  3. Panjabi MM, Shin EK, Chen NC, Wang JL (2000) Internal morphology of human cervical pedicles. Spine 25:1197–1205

    Article  CAS  PubMed  Google Scholar 

  4. Ebraheim NA, Xu R, Knight T, Yeasting RA (1997) Morphometric evaluation of lower cervical pedicle and its projection. Spine 22:1–6

    Article  CAS  PubMed  Google Scholar 

  5. Bydon M, Mathios D, Macki M, De la Garza-Ramos R, Aygun N, Sciubba DM et al (2014) Accuracy of C2 pedicle screw placement using the anatomic freehand technique. Clin Neurol Neurosurg 125:24–27

    Article  PubMed  Google Scholar 

  6. Schaefer C, Begemann P, Fuhrhop I, Schroeder M, Viezens L, Wiesner L et al (2011) Percutaneous instrumentation of the cervical and cervico-thoracic spine using pedicle screws: preliminary clinical results and analysis of accuracy. Eur Spine J 20:977–985

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hyun SJ, Kim YJ, Cheh G, Yoon SH, Rhim SC (2012) Free hand pedicle screw placement in the thoracic spine without any radiographic guidance: technical note, a cadaveric study. J Korean Neurosurg Soc 51:66–70

    Article  PubMed  PubMed Central  Google Scholar 

  8. Uehara M, Takahashi J, Hirabayashi H, Hashidate H, Ogihara N, Mukaiyama K et al (2010) Perforation rates of cervical pedicle screw insertion by disease and vertebral level. Open Orthop J 4:142–146

    Article  PubMed  PubMed Central  Google Scholar 

  9. Myles RT, Fong B, Esses SI, Hipp JA (1999) Radiographic verification of pedicle screw pilot hole placement using Kirshner wires versus beaded wires. Spine 24:476–480

    Article  CAS  PubMed  Google Scholar 

  10. Steinmann JC, Herkowitz HN, el-Kommos H, Wesolowski DP (1993) Spinal pedicle fixation. Confirmation of an image-based technique for screw placement. Spine 18:1856–1861

    Article  CAS  PubMed  Google Scholar 

  11. Solanki GA, Crockard HA (1999) Peroperative determination of safe superior transarticular screw trajectory through the lateral mass. Spine 24:1477–1482

    Article  CAS  PubMed  Google Scholar 

  12. Lee GY, Massicotte EM, Rampersaud YR (2007) Clinical accuracy of cervicothoracic pedicle screw placement: a comparison of the “open” lamino-foraminotomy and computer-assisted techniques. J Spinal Disord Tech 20:25–32

    Article  PubMed  Google Scholar 

  13. Ito Y, Sugimoto Y, Tomioka M, Hasegawa Y, Nakago K, Yagata Y (2008) Clinical accuracy of 3D fluoroscopy-assisted cervical pedicle screw insertion. J Neurosurg Spine 9:450–453

    Article  PubMed  Google Scholar 

  14. Rath SA, Moszko S, Schaffner PM, Cantone G, Braun V, Richter HP et al (2008) Accuracy of pedicle screw insertion in the cervical spine for internal fixation using frameless stereotactic guidance. J Neurosurg Spine 8:237–245

    Article  PubMed  Google Scholar 

  15. Hsieh JC, Drazin D, Firempong AO, Pashman R, Johnson JP, Kim TT (2014) Accuracy of intraoperative computed tomography image-guided surgery in placing pedicle and pelvic screws for primary versus revision spine surgery. Neurosurg Focus 36:E2

    Article  PubMed  Google Scholar 

  16. Tian NF, Huang QS, Zhou P, Zhou Y, Wu RK, Lou Y et al (2011) Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J 20:846–859

    Article  PubMed  Google Scholar 

  17. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC et al (2012) Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 21:247–255

    Article  PubMed  Google Scholar 

  18. Mason A, Paulsen R, Babuska JM, Rajpal S, Burneikiene S, Nelson EL et al (2014) The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine 20:196–203

    Article  PubMed  Google Scholar 

  19. Kosmopoulos V, Schizas C (2007) Pedicle screw placement accuracy: a meta-analysis. Spine 32:E111–E120

    Article  PubMed  Google Scholar 

  20. Lu S, Xu YQ, Zhang YZ, Li YB, Xie L, Shi JH et al (2009) A novel computer-assisted drill guide template for lumbar pedicle screw placement: a cadaveric and clinical study. Int J Med Robot 5:184–191

    Article  PubMed  Google Scholar 

  21. John PS, James C, Antony J, Tessamma T, Ananda R, Dinesh K (2007) A novel computer-assisted technique for pedicle screw insertion. Int J Med Robot 3:59–63

    Article  CAS  PubMed  Google Scholar 

  22. Putzier M, Strube P, Cecchinato R, Lamartina C, Hoff E (2014) A new navigational tool for pedicle screw placement in patients with severe scoliosis: a pilot study to prove feasibility, accuracy, and identify operative challenges. J Spinal Disord Tech 30(4):E430–E439. https://doi.org/10.1097/BSD.0000000000000220

    Google Scholar 

  23. Li X, Zhang Q, Zhao C, Yuan Z, Cai J (2014) Surgical application of pedicle drill template navigation technology for complicated scoliosis. Zhonghua Yi Xue Za Zhi 94:840–843

    PubMed  Google Scholar 

  24. Wu ZX, Huang LY, Sang HX, Ma ZS, Wan SY, Cui G et al (2011) Accuracy and safety assessment of pedicle screw placement using the rapid prototyping technique in severe congenital scoliosis. J Spinal Disord Tech 24:444–450

    Article  PubMed  Google Scholar 

  25. Merc M, Drstvensek I, Vogrin M, Brajlih T, Recnik G (2013) A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine. Arch Orthop Trauma Surg 133:893–899

    Article  PubMed  Google Scholar 

  26. Lu S, Xu YQ, Chen GP, Zhang YZ, Lu D, Chen YB et al (2011) Efficacy and accuracy of a novel rapid prototyping drill template for cervical pedicle screw placement. Comput Aided Surg 16:240–248

    Article  PubMed  Google Scholar 

  27. Kaneyama S, Sugawara T, Sumi M (2015) Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system. Spine 40:E341–E348

    Article  PubMed  Google Scholar 

  28. Kawaguchi Y, Nakano M, Yasuda T, Seki S, Hori T, Kimura T (2012) Development of a new technique for pedicle screw and Magerl screw insertion using a 3-dimensional image guide. Spine 37:1983–1988

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the Fujian Provincial Nature Science Foundation (2016J01607, 2015J01507), the Fujian Province Health and Family Planning Commission (2012-CX-34, 2015-2-32) and the Educational Department of Fujian Province (JA14274).

Author contributions

G. Zhang, Z. Yu, X. Chen and H. Lin designed the study. Z. Yu and X. Chen collected and analysed the data. Z. Yu, X. Chen, C. Wu and Y. Lin contributed sample collection and intellectual input. G. Zhang and Z. Yu drafted and wrote the manuscript. H. Lin critically revised the manuscript for intellectual content. All authors gave intellectual input to the study and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhua Huang or Haibin Lin.

Ethics declarations

Conflict of interest

G. Zhang, Z. Yu, X. Chen, X. Chen, C. Wu, Y. Lin, W. Huang and H. Lin declare that they have no competing interests.

This study was approved by the Ethics Committee of Putian College Affiliated Hospital. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

G. Zhang, Z. Yu and X. Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yu, Z., Chen, X. et al. Accurate placement of cervical pedicle screws using 3D-printed navigational templates. Orthopäde 47, 428–436 (2018). https://doi.org/10.1007/s00132-017-3515-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-017-3515-2

Keywords

Schlüsselwörter

Navigation