Advertisement

Der Orthopäde

, Volume 46, Issue 12, pp 1015–1021 | Cite as

Superior glenoid inclination and glenoid bone loss

Definition, assessment, biomechanical consequences, and surgical options
  • L. Favard
  • J. Berhouet
  • G. Walch
  • J. Chaoui
  • C. Lévigne
Leitthema

Abstract

Correct anatomical alignment of the glenoid component is of central importance for wear and loosening in shoulder endoprostheses. The aim of this article is to review and clarify the biomechanical and clinical effects of incorrect glenoid inclination in reverse and anatomical joint replacements. Based on the literature and on our own work, statements are made about the following: (1) the glenoid inclination of a normal glenoid, a degenerative glenoid and a glenoid implant, and the consequences if superior inclination is too large, and (2) the surgical technique as well as tips and tricks for correct adjustment of the inclination. The inclination of the glenoid plane is a morphological parameter of the scapula with high individual variation and is best measured using reformatted computed tomography using three-dimensional software for reconstruction and evaluation. The standard value is between 0 and 10°. Excessive superior inclination promotes translation of the humeral head and the formation of rotator cuff tears—in a degenerative glenoid, to superior wear. The correct amount of superior inclination of the glenoid component is essential for the survival of the implant. Positioning without excessive superior inclination is therefore mandatory. Precise preoperative determination of glenoid inclination and wear is important in order to correctly plan the positioning of an implant. This serves as the basis for deciding whether a bone graft or patient-specific instrumentation is necessary. Thus, the surgeon also has prognostic parameters for the anticipation of possible complications as a result of the bone defect and abnormal orientation. However, the evaluation must always include the position of the scapula in these considerations.

Keywords

Humeral head Shoulder arthroplasty Bone transplantation Rotator cuff Imaging, three-dimensional 

Abbreviations

2D

Two dimensional

3D

Three dimensional

CSA

Critical shoulder angle

CT

Computed tomography

Glh

Extrinsic glenoid inclination

Superiore Glenoidinklination und glenoidaler Knochenverlust

Definition, Assessment, biomechanische Konsequenzen und operative Optionen

Zusammenfassung

Die korrekte anatomische Ausrichtung der Glenoidkomponente ist in der Schulterendoprothetik für den Abrieb und die Lockerung von zentraler Bedeutung. Die Arbeit befasst sich mit den biomechanischen und klinischen Auswirkungen einer fehlerhaften Inklination beim inversen und anatomischen Gelenkersatz. Auf der Grundlage eigener Daten und Angaben in der Literatur werden Aussagen getroffen über: (1) Normwerte, Veränderungen bei degenerativen Veränderungen und die Auswirkungen einer zu hohen Inklination der Glenoidkomponente sowie (2) die Operationstechnik sowie Tipps und Tricks für eine korrekte Einstellung der Inklination. Die Inklination der Glenoidebene ist ein morphologischer Parameter der Skapula, der eine hohe individuelle Variationsbreite zeigt. Zur Evaluierung und Rekonstruktion wird er optimal anhand von reformatierten Computertomographiedarstellungen und 3‑D-Software ermittelt. Der Standardwert liegt zwischen 0 und 10°. Eine stark erhöhte superiore Inklination fördert die Translation des Humeruskopfes nach kranial und die Entstehung von Defekten der Rotatorenmanschette. Bei degenerativem Gelenkverschleiß kann sich auch ein kranialer Abrieb der Gelenkpfanne entwickeln. Die korrekte Einstellung der Inklination ist somit essenziell für die Überlebensrate der Glenoidkomponente, und eine Implantation in superiorer Fehlstellung ist daher unbedingt zu vermeiden. Die präzise präoperative Bestimmung der Inklination und des kranialen Abriebs der Gelenkpfanne ist von Bedeutung für eine korrekte Planung der Implantation einer Glenoidkomponente. Diese dient als Basis für die Entscheidung über einen knöchernen Aufbau sowie eine patientenspezifische Instrumentation. Damit verfügt der Operateur auch über prognostische Parameter für das Auftreten möglicher Komplikationen als Folge des Knochendefektes und einer fehlerhaften Orientierung. Die Evaluierung sollte jedoch grundsätzlich die Position der Skapula in diese Überlegungen einbeziehen.

Schlüsselwörter

Humeruskopf Schulterarthoplastik Knochentransplantation Totatorenmanschette Dreidimensionale Bildgebung 

Notes

Compliance with ethical guidelines

Conflict of interest

L. Favard, G. Walch and C. Lévigne are consultants for the company Wright and receive royalties from the company Tornier. J. Berhouet and J. Chaoui declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Bacle G, Nove-Josserand L, Garaud P, Walch G (2017) Long-term outcomes of reverse total shoulder arthroplasty: a follow-up of a previous study. J Bone Joint Surg Am 99(6):454–461.  https://doi.org/10.2106/jbjs.16.00223 CrossRefPubMedGoogle Scholar
  2. 2.
    Bishop JL, Kline SK, Aalderink KJ, Zauel R, Bey MJ (2009) Glenoid inclination: in vivo measures in rotator cuff tear patients and associations with superior glenohumeral joint translation. J Shoulder Elbow Surg 18(2):231–236.  https://doi.org/10.1016/j.jse.2008.08.002 CrossRefPubMedGoogle Scholar
  3. 3.
    Bockmann B, Soschynski S, Lechler P, Ruchholtz S, Debus F, Schwarting T, Frink M (2016) Age-dependent variation of glenohumeral anatomy: a radiological study. Int Orthop 40(1):87–93.  https://doi.org/10.1007/s00264-015-2863-y CrossRefPubMedGoogle Scholar
  4. 4.
    Bockmann B, Soschynski S, Lechler P, Schwarting T, Debus F, Soca B (2016) The osseous morphology of nondegenerated shoulders shows no side-related differences in elderly patients: an analysis of 102 computed tomography scans. J Shoulder Elbow Surg 25(8):1297–1302.  https://doi.org/10.1016/j.jse.2015.12.024 CrossRefPubMedGoogle Scholar
  5. 5.
    Chalmers PN, Salazar D, Chamberlain A, Keener JD (2017) Radiographic characterization of the B2 glenoid: the effect of computed tomographic axis orientation. J Shoulder Elbow Surg 26(2):258–264.  https://doi.org/10.1016/j.jse.2016.07.021 CrossRefPubMedGoogle Scholar
  6. 6.
    Churchill RS, Brems JJ, Kotschi H (2001) Glenoid size, inclination, and version: an anatomic study. J Shoulder Elbow Surg 10(4):327–332.  https://doi.org/10.1067/mse.2001.115269 CrossRefPubMedGoogle Scholar
  7. 7.
    Daggett M, Werner B, Collin P, Gauci MO, Chaoui J, Walch G (2015) Correlation between glenoid inclination and critical shoulder angle: a radiographic and computed tomography study. J Shoulder Elbow Surg 24(12):1948–1953.  https://doi.org/10.1016/j.jse.2015.07.013 CrossRefPubMedGoogle Scholar
  8. 8.
    Engelhardt C, Farron A, Becce F, Place N, Pioletti DP, Terrier A (2017) Effects of glenoid inclination and acromion index on humeral head translation and glenoid articular cartilage strain. J Shoulder Elbow Surg 26(1):157–164.  https://doi.org/10.1016/j.jse.2016.05.031 CrossRefPubMedGoogle Scholar
  9. 9.
    Falaise V, Levigne C, Favard L (2011) Scapular notching in reverse shoulder arthroplasties: the influence of glenometaphyseal angle. Orthop Traumatol Surg Res 97(6 Suppl):131–137.  https://doi.org/10.1016/j.otsr.2011.06.007 CrossRefGoogle Scholar
  10. 10.
    Ghafurian S, Galdi B, Bastian S, Tan V, Li K (2016) Computerized 3D morphological analysis of glenoid orientation. J Orthop Res 34(4):692–698.  https://doi.org/10.1002/jor.23053 CrossRefPubMedGoogle Scholar
  11. 11.
    Gutierrez S, Walker M, Willis M, Pupello DR, Frankle MA (2011) Effects of tilt and glenosphere eccentricity on baseplate/bone interface forces in a computational model, validated by a mechanical model, of reverse shoulder arthroplasty. J Shoulder Elbow Surg 20(5):732–739.  https://doi.org/10.1016/j.jse.2010.10.035 CrossRefPubMedGoogle Scholar
  12. 12.
    Habermeyer P, Magosch P, Luz V, Lichtenberg S (2006) Three-dimensional glenoid deformity in patients with osteoarthritis: a radiographic analysis. J Bone Joint Surg Am 88(6):1301–1307.  https://doi.org/10.2106/JBJS.E.00622 PubMedGoogle Scholar
  13. 13.
    Van Haver A, Heylen S, Vuylsteke K, Declercq G, Verborgt O (2016) Reliability analysis of glenoid component inclination measurements on postoperative radiographs and computed tomography-based 3D models in total and reversed shoulder arthroplasty patients. J Shoulder Elbow Surg 25(4):632–640.  https://doi.org/10.1016/j.jse.2015.09.003 CrossRefPubMedGoogle Scholar
  14. 14.
    Hughes RE, Bryant CR, Hall JM, Wening J, Huston LJ, Kuhn JE, Blasier RB et al (2003) Glenoid inclination is associated with full-thickness rotator cuff tears. Clin Orthop Relat Res 407:86–91CrossRefGoogle Scholar
  15. 15.
    Kandemir U, Allaire RB, Jolly JT, Debski RE, McMahon PJ (2006) The relationship between the orientation of the glenoid and tears of the rotator cuff. J Bone Joint Surg Br 88(8):1105–1109.  https://doi.org/10.1302/0301-620x.88b8.17732 CrossRefPubMedGoogle Scholar
  16. 16.
    Knowles NK, Ferreira LM, Athwal GS (2016) Premorbid retroversion is significantly greater in type B2 glenoids. J Shoulder Elbow Surg 25(7):1064–1068.  https://doi.org/10.1016/j.jse.2015.11.002 CrossRefPubMedGoogle Scholar
  17. 17.
    Konrad GG, Markmiller M, Jolly JT, Ruter AE, Sudkamp NP, McMahon PJ, Debski RE (2006) Decreasing glenoid inclination improves function in shoulders with simulated massive rotator cuff tears. Clin Biomech (Bristol, Avon) 21(9):942–949.  https://doi.org/10.1016/j.clinbiomech.2006.04.013 CrossRefGoogle Scholar
  18. 18.
    Levigne C, Garret J, Boileau P, Alami G, Favard L, Walch G (2011) Scapular notching in reverse shoulder arthroplasty: is it important to avoid it and how? Clin Orthop Relat Res 469(9):2512–2520.  https://doi.org/10.1007/s11999-010-1695-8 CrossRefPubMedGoogle Scholar
  19. 19.
    Lewis GS, Armstrong AD (2011) Glenoid spherical orientation and version. J Shoulder Elbow Surg 20(1):3–11.  https://doi.org/10.1016/j.jse.2010.05.012 CrossRefPubMedGoogle Scholar
  20. 20.
    Maurer A, Fucentese SF, Pfirrmann CW, Wirth SH, Djahangiri A, Jost B, Gerber C (2012) Assessment of glenoid inclination on routine clinical radiographs and computed tomography examinations of the shoulder. J Shoulder Elbow Surg 21(8):1096–1103.  https://doi.org/10.1016/j.jse.2011.07.010 CrossRefPubMedGoogle Scholar
  21. 21.
    Moor BK, Bouaicha S, Rothenfluh DA, Sukthankar A, Gerber C (2013) Is there an association between the individual anatomy of the scapula and the development of rotator cuff tears or osteoarthritis of the glenohumeral joint?: A radiological study of the critical shoulder angle. Bone Joint J 95–b(7):935–941.  https://doi.org/10.1302/0301-620x.95b7.31028 CrossRefPubMedGoogle Scholar
  22. 22.
    Owaydhah WH, Alobaidy MA, Alraddadi AS, Soames RW (2017) Three-dimensional analysis of the proximal humeral and glenoid geometry using MicroScribe 3D digitizer. Surg Radiol Anat 39(7):767–772.  https://doi.org/10.1007/s00276-016-1782-y CrossRefPubMedGoogle Scholar
  23. 23.
    Ricchetti ET, Hendel MD, Collins DN, Iannotti JP (2013) Is premorbid glenoid anatomy altered in patients with glenohumeral osteoarthritis? Clin Orthop Relat Res 471(9):2932–2939.  https://doi.org/10.1007/s11999-013-3069-5 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Terrier A, Merlini F, Pioletti DP, Farron A (2009) Total shoulder arthroplasty: downward inclination of the glenoid component to balance supraspinatus deficiency. J Shoulder Elbow Surg 18(3):360–365.  https://doi.org/10.1016/j.jse.2008.11.008 CrossRefPubMedGoogle Scholar
  25. 25.
    Walch G, Badet R, Boulahia A, Khoury A (1999) Morphologic study of the glenoid in primary glenohumeral osteoarthritis. J Arthroplasty 14(6):756–760CrossRefPubMedGoogle Scholar
  26. 26.
    Werner BS, Hudek R, Burkhart KJ, Gohlke F (2017) The influence of three-dimensional planning on decision-making in total shoulder arthroplasty. J Shoulder Elbow Surg.  https://doi.org/10.1016/j.jse.2017.01.006 Google Scholar
  27. 27.
    de Wilde LF, Poncet D, Middernacht B, Ekelund A (2010) Prosthetic overhang is the most effective way to prevent scapular conflict in a reverse total shoulder prosthesis. Acta Orthop 81(6):719–726.  https://doi.org/10.3109/17453674.2010.538354 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wong AS, Gallo L, Kuhn JE, Carpenter JE, Hughes RE (2003) The effect of glenoid inclination on superior humeral head migration. J Shoulder Elbow Surg 12(4):360–364.  https://doi.org/10.1016/mse.2003.S1058274603000260 CrossRefPubMedGoogle Scholar
  29. 29.
    Young A, Walch G, Boileau P, Favard L, Gohlke F, Loew M, Mole D (2011) A multicentre study of the long-term results of using a flat-back polyethylene glenoid component in shoulder replacement for primary osteoarthritis. J Bone Joint Surg Br 93(2):210–216.  https://doi.org/10.1302/0301-620x.93b2.25086 CrossRefPubMedGoogle Scholar
  30. 30.
    Young AA, Walch G, Pape G, Gohlke F, Favard L (2012) Secondary rotator cuff dysfunction following total shoulder arthroplasty for primary glenohumeral osteoarthritis: results of a multicenter study with more than five years of follow-up. J Bone Joint Surg Am 94(8):685–693.  https://doi.org/10.2106/jbjs.j.00727 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • L. Favard
    • 1
  • J. Berhouet
    • 1
  • G. Walch
    • 2
  • J. Chaoui
    • 3
  • C. Lévigne
    • 4
  1. 1.Orthopédie 1CHU TrousseauToursFrance
  2. 2.Centre Orthopédique SantyHôpital Jean MermozLyonFrance
  3. 3.ImascapBrestFrance
  4. 4.Clinique du ParcLyonFrance

Personalised recommendations