Skip to main content

Aus alt mach neu

Relevante Faktoren bei der Frakturheilung im Alter

New from old

Relevant factors for fracture healing in aging bone

Zusammenfassung

Hintergrund

Der Frakturheilungsprozess ist ein komplexer biologischer Prozess mit spezifischen zeitlichen Expressionsmustern. Hierbei kommt es zum Aufbau neuen Knochengewebes, welches in Qualität und Struktur dem ursprünglichen Gewebe gleicht. Dies geschieht in 4 Phasen: Entzündung, Bildung eines Weichgewebekallus, Bildung eines knöchernen Kallus und Umbauphase des knöchernen Kallus zu reifen Knochen. Die genaue Orchestrierung der einzelnen beteiligten Zellen ist von entscheidender Bedeutung. Dieser Prozess wird durch systemische oder lokale Faktoren reguliert.

Fragestellung

Darstellung der Frakturheilungsphasen und ihrer relevanten Faktoren. Während des Alterungsprozesses kommt es zum Anstieg von reaktiven Sauerstoffspezies und einem veränderten Expressionsmuster von Wachstumsfaktoren, was einen negativen Einfluss auf die Frakturheilung ausübt.

Methode

Diese Arbeit basiert auf einer selektiven Literaturrecherche in der Datenbank PubMed bzgl. des Einflusses des Alterungsprozesses auf die Frakturheilung.

Schlussfolgerung

Ein genaues Verständnis der Prozesse der Frakturheilung und ihrer Veränderungen im Alter ist notwendig, um verzögerte oder ausbleibende Heilung im Alter besser zu verstehen, mit dem Ziel, eines Tages gezielt therapeutisch eingreifen zu können.

Abstract

Background

Fracture healing is a complex biological process with specific temporal expression patterns. During this process new bone tissue is formed, which is similar to the original bone in quality and structure. This occurs in four phases: inflammation, formation of a soft tissue callus, formation of a bony callus and remodelling of the bony callus. This needs the precise orchestration of each cell type involved.

Objectives

This article presents details of the fracture healing phases and the relevant factors. During the aging process there is an increase of reactive oxygen species and a change in expression pattern of growth factors that have a negative effect on the fracture healing process.

Methods

A selective review of the literature was carried out in PubMed concerning the influence of aging on fracture healing.

Conclusion

The healing process is regulated by systemic and local factors. An understanding of these processes and the changes during aging is necessary in order to improve the knowledge of delayed or lack of fracture healing during aging to decide when an intervention is needed.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Gerstenfeld LC, Cullinane DM, Barnes GL et al (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Obermeyer TS, Yonick D, Lauing K et al (2012) Mesenchymal stem cells facilitate fracture repair in an alcohol-induced impaired healing model. J Orthop Trauma 26:712–718

    PubMed Central  PubMed  Article  Google Scholar 

  3. 3.

    Corselli M, Chen C-W, Crisan M et al (2010) Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol 30:1104–1109

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Kitaori T, Ito H, Schwarz EM et al (2009) Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60:813–823

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Iyer SS, Rojas M (2008) Anti-infl ammatory effects of mesenchymal stem cells: novel. Expert Opin Biol Ther 8:569–582

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 355:S7–S21

    PubMed  Article  Google Scholar 

  7. 7.

    AI-Aql ZS, Alagl AS, Graves DT et al (2008) Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 87:107–118

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. 8.

    Mi M, Jin H, Wang B et al (2013) Chondrocyte BMP2 signaling plays an essential role in bone fracture healing. Gene 512:211–218

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. 9.

    Ketenjian AY, Arsenis C (1975) Morphological and biochemical studies during differentiation and calcification of fracture callus cartilage. Clin Orthop Relat Res 107:266–273

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Weiss S, Zimmermann G, Pufe T et al (2009) The systemic angiogenic response during bone healing. Arch Orthop Trauma Surg 129:989–997

    PubMed  Article  Google Scholar 

  11. 11.

    Petersen W, Tsokos M, Pufe T (2002) Expression of VEGF 121 and VEGF 165 in hypertrophic chondrocytes of the human growth plate and epiphyseal cartilage. J Anat 201:153–157

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. 12.

    Hausman MR, Schaffler MB, Majeska RJ (2001) Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 6:560–564

    Article  Google Scholar 

  13. 13.

    Hirao M, Tamai N, Tsumaki N et al (2006) Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification. J Biol Chem 281:31079–31092

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Nicolaije C, Koedam M, Leeuwen JPTM van (2012) Decreased oxygen tension lowers reactive oxygen species and apoptosis and inhibits osteoblast matrix mineralization through changes in early osteoblast differentiation. J Cell Physiol 227:1309–1318

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Wu D, Malda J, Crawford R, Xiao Y (2007) Effects of hyperbaric oxygen on proliferation and differentiation of osteoblasts from human alveolar bone. Connect Tissue Res 48:206–213

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Chen Y, Alman BA (2009) Wnt pathway, an essential role in bone regeneration. J Cell Biochem 106:353–362

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Li J, Mori S, Kaji Y et al (1999) Effect of bisphosphonate (incadronate) on fracture healing of long bones in rats. J Bone Miner Res 14:969–979

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926

    PubMed  Article  Google Scholar 

  19. 19.

    Zhou S, Greenberger JS, Epperly MW et al (2008) Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7:335–343

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. 20.

    Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19:109–124

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. 21.

    Griffith JF, Yeung DKW, Antonio GE et al (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838

    PubMed  Article  Google Scholar 

  22. 22.

    Kajkenova O, Lecka-Czernik B, Gubrij I et al (1997) Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner Res 12:1772–1779

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Moerman EJ, Teng K, Lipschitz DA et al (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3:379–389

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. 24.

    Justesen J, Stenderup K, Eriksen EF, Kassem M (2002) Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcif Tissue Int 71:36–44

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Abdallah BM, Haack-Sørensen M, Fink T, Kassem M (2006) Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone 39:181–188

    PubMed  Article  Google Scholar 

  26. 26.

    Stringer B, Waddington R, Houghton A et al (2007) Serum from postmenopausal women directs differentiation of human clonal osteoprogenitor cells from an osteoblastic toward an adipocytic phenotype. Calcif Tissue Int 80:233–243

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Gasparrini M, Rivas D, Elbaz A, Duque G (2009) Differential expression of cytokines in subcutaneous and marrow fat of aging C57BL/6J mice. Exp Gerontol 44:613–618

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Takada K, Inaba M, Ichioka N et al (2006) Treatment of senile osteoporosis in SAMP6 mice by intra-bone marrow injection of allogeneic bone marrow cells. Stem Cells 24:399–405

    PubMed  Article  Google Scholar 

  29. 29.

    Almeida M, Han L, Martin-Millan M et al (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282:27285–27297

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. 30.

    Almeida M, Han L, Martin-Millan M et al (2010) Aging and oxidative stress: a new look at old bone. IBMS Bonekey 7:340–352

    Article  Google Scholar 

  31. 31.

    Brodeur MR, Brissette L, Falstrault L et al (2008) Influence of oxidized low-density lipoproteins (LDL) on the viability of osteoblastic cells. Free Radic Biol Med 44:506–517

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Trinei M, Giorgio M, Cicalese A et al (2002) A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21:3872–3878

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Wang X, Kua H-Y, Hu Y et al (2006) p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. J Cell Biol 172:115–125

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  34. 34.

    Huang MS, Morony S, Lu J et al (2007) Atherogenic phospholipids attenuate osteogenic signaling by BMP-2 and parathyroid hormone in osteoblasts. J Biol Chem 282:21237–21243

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  35. 35.

    Ambrogini E, Almeida M, Martin-Millan M et al (2010) FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab 11:136–146

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. 36.

    Nishikawa K, Nakashima T, Takeda S et al (2010) Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Invest 120:3455–3465

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. 37.

    Suh JH, Shenvi SV, Dixon BM et al (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci U S A 101:3381–3386

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. 38.

    Wruck CJ, Fragoulis A, Gurzynski A et al (2011) Role of oxidative stress in rheumatoid arthritis: insights from the Nrf2-knockout mice. Ann Rheum Dis 70:844–850

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Hinoi E, Fujimori S, Wang L et al (2006) Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation. J Biol Chem 281:18015–18024

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Wakabayashi N, Shin S, Slocum SL et al (2010) Regulation of notch1 signaling by nrf2: implications for tissue regeneration. Sci Signal 3:ra52

    PubMed Central  PubMed  Google Scholar 

  41. 41.

    Roforth MM, Fujita K, McGregor UI et al (2013) Effects of age on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in humans. Bone 59C:1–6

    Google Scholar 

  42. 42.

    Haller R, Schwanbeck R, Martini S et al (2012) Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation. Cell Death Differ 19:461–469

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. 43.

    Hilton MJ, Tu X, Wu X et al (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14:306–314

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. 44.

    Zanotti S, Smerdel-Ramoya A, Stadmeyer L et al (2008) Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology 149:3890–3899

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  45. 45.

    Engin F, Yao Z, Yang T et al (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14:299–305

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. 46.

    Bai S, Kopan R, Zou W et al (2008) NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283:6509–6518

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Garrett IR, Boyce BF, Oreffo RO et al (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. 48.

    Lee NK, Choi YG, Baik JY et al (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Thorner MO, Vance ML (1988) Growth hormone. J Clin Invest 82:745–747

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  50. 50.

    Amin S, Riggs BL, Melton LJ et al (2007) High serum IGFBP-2 is predictive of increased bone turnover in aging men and women. J Bone Miner Res 22:799–807

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Giustina A, Mazziotti G, Canalis E (2008) Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 29:535–559

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  52. 52.

    Cao JJ, Kurimoto P, Boudignon B et al (2007) Aging impairs IGF-I receptor activation and induces skeletal resistance to IGF-I. J Bone Miner Res 22:1271–1279

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Pfeilschifter J, Diel I, Pilz U et al (1993) Mitogenic responsiveness of human bone cells in vitro to hormones and growth factors decreases with age. J Bone Miner Res 8:707–717

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Davis PY, Frazier CR, Shapiro JR, Fedarko NS (1997) Age-related changes in effects of insulin-like growth factor I on human osteoblast-like cells. Biochem J 324:753–760

    CAS  Google Scholar 

  55. 55.

    McLean RR (2009) Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep 7:134–139

    PubMed  Article  Google Scholar 

  56. 56.

    Guo R, Yamashita M, Zhang Q et al (2008) Ubiquitin ligase Smurf1 mediates tumor necrosis factor-induced systemic bone loss by promoting proteasomal degradation of bone morphogenetic signaling proteins. J Biol Chem 283:23084–23092

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  57. 57.

    Almeida M, Han L, Ambrogini E et al (2010) Oxidative stress stimulates apoptosis and activates NF-kappaB in osteoblastic cells via a PKCbeta/p66shc signaling cascade: counter regulation by estrogens or androgens. Mol Endocrinol 24:2030–2037

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  58. 58.

    Rauner M, Sipos W, Pietschmann P (2013) Age-dependent Wnt gene expression in bone and during the course of osteoblast differentiation. Age (Dordr) 30:273–282

    Google Scholar 

Download references

Danksagung

Wir bedanken uns bei Herrn Wolfgang Graulich für die Erstellung der Abbildungen. Diese Arbeit wurde unterstützt durch die Exzellenzinitiative von Bund und Ländern (OPPa188b; OPSF261; OPSF263; OPBF071), dem Interdisziplinären Klinischen Forschungszentrum (IZKF) der medizinischen Fakultät der Universität RWTH Aachen (T9-3; T9-5) sowie der Deutschen Forschungsgemeinschaft (DFG) (DFG No. PU 214/3-2: 4-2; 5-2). Ferner danken wir S. Echterhagen, N. Koch, M. Nicolau, A. Rüben and L. Shen für ihre technische Unterstützung.

Einhaltung ethischer Richtlinien

Interessenkonflikt. R. Beckmann, M. Tohldnezhad, P. Lichte, C.J. Wruck, H. Jahr, H.C. Pape, T. Pufe geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Beckmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beckmann, R., Tohidnezhad, M., Lichte, P. et al. Aus alt mach neu. Orthopäde 43, 298–305 (2014). https://doi.org/10.1007/s00132-013-2160-7

Download citation

Schlüsselwörter

  • Knochenbruchheilung
  • Alterung
  • Oxidativer Stress
  • ROS (reaktive Sauerstoffspezies)
  • Wachstumsfaktoren

Keywords

  • Fracture healing
  • Aging
  • Oxidative stress
  • Reactive oxygen species
  • Growth factors