Skip to main content
Log in

Welche Hüftgelenkgleitpaarung für welchen Patienten?

Tribologie der Zukunft

Which hip articulation bearing for which patient?

Tribology of the future

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Der Hüftgelenkersatz weist seit Charnley’s „Low-friction“-Philosophie hervorragende Langzeitergebnisse auf. Die aseptische Osteolyse als Hauptrevisionsgrund führte zur Reduktion des Abriebvolumens als Hauptziel. Die Gelenkluxation als zweithäufigster Revisionsgrund wurde durch die Vergrößerung des Kopfdurchmessers adressiert. Dies ist bei Paarungen mit Polyethylen nur äußerst begrenzt möglich: größere Köpfe weisen einen erhöhten Abrieb auf (auch bei quervernetztem PE). Bei Hart-hart-Paarungen dagegen nehmen mit zunehmendem Kopfdurchmesser unter Simulatorbedingungen der Verschleiß und die Luxationsrate ab, was zum vermehrten klinischen Einsatz führte. Hierbei wurde nicht ausreichend berücksichtigt, dass beim Zusammenbruch des Schmierfilms ein sprunghafter, mit Kopfgröße zunehmender Anstieg an Verschleiß und Reibung auftritt. Derartige ungünstige Bedingungen können klinisch durch vielerlei Faktoren bedingt sein. Als Konsequenz kommt es derzeit nun zu unerwarteten klinischen Komplikationen. Standardisierte präklinische Testungen sind eine Minimalanforderung, müssen dringend verbessert werden und sind trotzdem kein Garant für den klinischen Erfolg neuer Materialien und Designs. Die Zukunft der Tribologie liegt in der Vermeidung ungünstiger Bedingungen beim Patienten, in der Weiterentwicklung und optimierten Anwendung bereits erprobter und nicht in neuen Materialien.

Abstract

Replacement of the hip joint has become an exceptionally successful procedure since the inauguration of the low friction principle by Charnley. Aseptic osteolysis and joint dislocation have been addressed by the development of wear-optimized materials and the introduction of larger heads. As an increase in head diameter against polyethylene causes wear increase, larger hard-on-hard bearings were introduced, which exhibit reduced wear and reduced dislocation risk with increasing head diameter. These findings were derived from standard simulator testing, not sufficiently considering the risk of fluid film breakdown under adverse conditions, which can cause a dramatic increase in wear and friction proportional to the head diameter. Such adverse conditions can occur clinically in patients due to several factors and have caused the presently observed unexpected problems with these new designs. Standardized preclinical testing has to be viewed as a minimum requirement but certainly not as a guarantee for the clinical success of new materials and designs even if the testing is adapted to the current patient requirements, which is presently not the case. The future of tribology lies in the prevention of adverse conditions in patients, the improvement and optimized use of proven existing materials and not in the use of new materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. 7th Annual Report (2010) National Joint Registry for England and Wales

  2. Amstutz HC, Le Duff MJ (2008) Eleven years of experience with metal-on-metal hybrid hip resurfacing: a review of 1000 conserve plus. J Arthroplasty 23:36–43

    Article  PubMed  Google Scholar 

  3. Australian Orthopaedic Association (2010) National Joint Replacement Registry Annual Report

  4. Baxter RM, Freeman TA, Kurtz SM, Steinbeck MJ (2011) Do tissues from THA revision of highly crosslinked UHMWPE liners contain wear debris and associated inflammation? Clin Orthop Relat Res 469:2308–2317

    Article  PubMed  Google Scholar 

  5. Bergmann G, Graichen F, Rohlmann A et al (2010) Realistic loads for testing hip implants. Biomed Mater Eng 2:65–75

    Google Scholar 

  6. Bishop NE, Waldow F, Morlock MM (2008) Friction moments of large metal-on-metal hip joint bearings and other modern designs. Med Eng Phys 30:1057–1064

    Article  PubMed  CAS  Google Scholar 

  7. Bragdon CR, Barrett S, Martell JM et al (2006) Steady-state penetration rates of electron beam-irradiated, highly cross-linked polyethylene at an average 45-month follow-up. J Arthroplasty 21:935–943

    Article  PubMed  Google Scholar 

  8. Campbell P, Ebramzadeh E, Nelson S et al (2010) Histological features of pseudotumor-like tissues from metal-on-metal hips. Clin Orthop Relat Res 468:2321–2327

    Article  PubMed  Google Scholar 

  9. Charnley J (1972) The long-term results of low-friction arthroplasty of the hip performed as a primary intervention. J Bone Joint Surg [Br] 54:61–76

    Google Scholar 

  10. Dowson D, Jin ZM (2006) Metal-on-metal hip joint tribology. Proc Inst Mech Eng [H] 220:107–118

    Google Scholar 

  11. Gabbar OA, Rajan RA, Londhe S, Hyde ID (2008) Ten- to twelve-year follow-up of the furlong hydroxyapatite-coated femoral stem and threaded acetabular cup in patients younger than 65 years. J Arthroplasty 23:413–437

    Article  PubMed  Google Scholar 

  12. Garbuz DS, Tanzer M, Greidanus NV et al (2010) The John Charnley Award: metal-on-metal hip resurfacing versus large-diameter head metal-on-metal total hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 468:318–325

    Article  PubMed  Google Scholar 

  13. Glaser D, Komistek RD, Cates HE, Mahfouz MR (2008) Clicking and squeaking: in vivo correlation of sound and separation for different bearing surfaces. J Bone Joint Surg [Am] 90(Suppl 4):112–120

    Google Scholar 

  14. Griffin WL, Nanson CJ, Springer BD et al (2010) Reduced articular surface of one-piece cups: a cause of runaway wear and early failure. Clin Orthop Relat Res 468:2328–2332

    Article  PubMed  Google Scholar 

  15. Hothan A, Huber G, Weiss C et al (2011) The influence of component design, bearing clearance and axial load on the squeaking characteristics of ceramic hip articulations. J Biomech 44:837–841

    Article  PubMed  Google Scholar 

  16. Huddleston JI, Harris AH, Atienza CA, Woolson ST (2010) Hylamer vs conventional polyethylene in primary total hip arthroplasty: a long-term case-control study of wear rates and osteolysis. J Arthroplasty 25:203–207

    Article  PubMed  Google Scholar 

  17. Hwang KT, Kim YH, Kim YS, Choi IY (2011) Cementless total hip arthroplasty with a metal-on-metal bearing in patients younger than 50 Years. J Arthroplasty [Epub ahead of print]

  18. Klestil T, Morlock MM, Schwieger K et al (2006) Migration of two different cementless hip arthroplasty stems in combination with two different heads: a biomechanical in vitro study. Arch Orthop Trauma Surg 126:387–393

    Article  PubMed  CAS  Google Scholar 

  19. Kurtz SM, Gawel HA, Patel JD (2011) History and systematic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin Orthop Relat Res 469:2262–2277

    Article  PubMed  Google Scholar 

  20. Kwon YM, Thomas P, Summer B et al (2010) Lymphocyte proliferation responses in patients with pseudotumors following metal-on-metal hip resurfacing arthroplasty. J Orthop Res 28:444–450

    PubMed  CAS  Google Scholar 

  21. Lachiewicz PF, Heckman DS, Soileau ES et al (2009) Femoral head size and wear of highly cross-linked polyethylene at 5–8 years. Clin Orthop Relat Res 467:3290–3296

    Article  PubMed  Google Scholar 

  22. Langton DJ, Sprowson AP, Joyce TJ et al (2009) Blood metal ion concentrations after hip resurfacing arthroplasty: a comparative study of articular surface replacement and Birmingham Hip Resurfacing Arthroplasties. J Bone Joint Surg [Br] 91:1287–1295

    Google Scholar 

  23. Lavigne M, Belzile EL, Roy A et al (2011) Comparison of whole-blood metal ion levels in four types of metal-on-metal large-diameter femoral head total hip arthroplasty: the potential influence of the adapter sleeve. J Bone Joint Surg [Am] 93(Suppl 2):128–136

    Google Scholar 

  24. Lewinnek GE, Lewis JL, Tarr R et al (1978) Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg [Am] 60:217–220

    Google Scholar 

  25. Macdonald D, Sakona A, Ianuzzi A et al (2011) Do first-generation highly crosslinked polyethylenes oxidize in vivo? Clin Orthop Relat Res 469:2278–2285

    Article  PubMed  Google Scholar 

  26. McKellop H, Park SH, Chiesa R et al (1996) In vivo wear of three types of metal on metal hip prostheses during two decades of use. Clin Orthop Relat Res 329:128–140

    Article  Google Scholar 

  27. McMinn DJ, Daniel J, Ziaee H, Pradhan C (2011) Indications and results of hip resurfacing. Int Orthop 35:231–237

    Article  PubMed  CAS  Google Scholar 

  28. Medel F, Kurtz SM, Klein G et al (2008) Clinical, surface damage and oxidative performance of poly II tibial inserts after long-term implantation. J Long Term Eff Med Implants 18:151–165

    PubMed  Google Scholar 

  29. Mesko JW, D’Antonio JA, Capello WN et al (2011) Ceramic-on-ceramic hip outcome at a 5–10 year interval: has it lived up to its expectations? J Arthroplasty 26:172–177

    Article  PubMed  Google Scholar 

  30. Mittelmeier H (1984) Hip joint replacement in young patients. Z Orthop Ihre Grenzgeb 122:20–26

    Article  PubMed  CAS  Google Scholar 

  31. Morlock M, Nassutt R, Janssen R et al (2001) Mismatched wear couple zirconium oxide and aluminum oxide in total hip arthroplasty. J Arthroplasty 16:1071–1074

    Article  PubMed  CAS  Google Scholar 

  32. Morlock MM, Bishop N, Stahmer F et al (2008) Reasons for failure of hip resurfacing implants. A failure analysis based on 250 revision specimens. Orthopade 37:695–703

    Article  PubMed  CAS  Google Scholar 

  33. Nassutt R, Wimmer MA, Schneider E, Morlock MM (2003) The influence of resting periods on friction in the artificial hip. Clin Orthop Relat Res 407:127–138

    Article  PubMed  Google Scholar 

  34. Oberbach T, Begand S, Glien W (2007) In-vitro wear of different ceramic couplings. Key Eng Mater 330–332:1231–1234

    Google Scholar 

  35. Parvizi J, Adeli B, Wong JC et al (2011) A squeaky reputation: the problem may be design-dependent. Clin Orthop Relat Res 469:1598–1605

    Article  PubMed  Google Scholar 

  36. Plitz W (2007) Metal/metal coupling in total hip arthroplasty. Progress or setback? Orthopade 36:212, 214–222, 219

    Article  PubMed  CAS  Google Scholar 

  37. Riede U, Luem M, Ilchmann T et al (2007) The M.E. Muller straight stem prosthesis: 15 year follow-up. survivorship and clinical results. Arch Orthop Trauma Surg 127:587–592

    Article  PubMed  Google Scholar 

  38. Ring PA (1978) Five to fourteen year interim results of uncemented total hip arthroplasty. Clin Orthop Relat Res 137:87–95

    PubMed  Google Scholar 

  39. Schlegel UJ, Bishop N, Sobottke R et al (2011) Squeaking as a cause for revision of a composite ceramic cup. Orthopade 40:812–816

    Article  PubMed  CAS  Google Scholar 

  40. Scholes SC, Inman IA, Unsworth A, Jones E (2008) Tribological assessment of a flexible carbon-fibre-reinforced poly(ether-ether-ketone) acetabular cup articulating against an alumina femoral head. Proc Inst Mech Eng H 222:273–283

    PubMed  CAS  Google Scholar 

  41. Siebert WE, Mai S, Moroni A et al (2009) A two-year prospective and retrospective multi-center study of the TriboFit(R) hip system. J Long Term Eff Med Implants 19:149–155

    PubMed  Google Scholar 

  42. Stewart TD, Tipper JL, Insley G et al (2003) Long-term wear of ceramic matrix composite materials for hip prostheses under severe swing phase microseparation. J Biomed Mater Res B Appl Biomater 66:567–573

    Article  PubMed  Google Scholar 

  43. Weiss C, Gdaniec P, Hoffmann NP et al (2010) Squeak in hip endoprosthesis systems: an experimental study and a numerical technique to analyze design variants. Med Eng Phys 32:604–609

    Article  PubMed  Google Scholar 

  44. Wroblewski BM, Fleming PA, Siney PD (1999) Charnley low-frictional torque arthroplasty of the hip. 20–30 year results. J Bone Joint Surg [Br] 81:427–430

    Google Scholar 

Download references

Interessenkonflikt

Es besteht kein direkter Interessenkonflikt. Der Erstautor ist Berater der Firmen Aesculap, DePuy und Zimmer. Das Institut für Biomechanik erhält projektbezogene finanzielle Unterstützung von den Firmen Aesculap, Ceramtec und DePuy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.M. Morlock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morlock, M., Bishop, N. & Kaddick, C. Welche Hüftgelenkgleitpaarung für welchen Patienten?. Orthopäde 40, 1061–1067 (2011). https://doi.org/10.1007/s00132-011-1849-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-011-1849-8

Schlüsselwörter

Keywords

Navigation