Skip to main content

Advertisement

Log in

Dynamische Versorgung der Lendenwirbelsäule

Klinische und biomechanische Analyse der Erfolgsfaktoren

Dynamic instrumentation of the lumbar spine

Clinical and biomechanical analysis of success factors

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Der lumbale Bandscheibenersatz und die posteriore dynamische Stabilisierung stellen alternative Verfahren zur Spondylodese dar, die das Risiko der Anschlussdegeneration mindern sollen. Der Bandscheibenersatz ist bei reiner Diskopathie ohne Beteiligung der Facettengelenke indiziert. Das LWS-Becken-Gleichgewicht beeinflusst die Biomechanik des Implantats: Beckeninzidenz, Sakrumneigung, Segmentlordosen und das mittlere Drehzentrum müssen berücksichtigt werden. Die dynamische Stabilisierung ist bei moderater Diskopathie und Facettendegeneration, degenerativer Spondylolisthese ersten Grades mit hypermobilem Segment und bei der dynamischen Spinalkanalstenose indiziert. Die Kombination der kaudalen Spondylodese und der kranialen dynamischen Stabilisierung stellt die Lordose bei Mehretageneingriffen besser ein, was der Anschlussdegeneration vorbeugt. Bei großer Beckeninzidenz und Sakrumneigung sollte L5-S1 aufgrund hoher Scherkräfte durch eine Spondylodese versorgt werden.

Abstract

Total disc replacement and posterior dynamic stabilization represent alternatives to lumbar spinal fusion which should reduce the risk of adjacent segment degeneration. Disc replacement is indicated for pure discopathy without facet joint degeneration. Spinopelvic balance influences the implant’s biomechanics. Therefore pelvic incidence, sacral slope, segmental lordosis and the mean axis of rotation need to be considered. Dynamic stabilization is indicated in moderate discopathy and facet joint degeneration, in degenerative spondylolisthesis grade I with a hypermobile segment and in dynamic lumbar stenosis. The combination of caudal fusion and cranial dynamic stabilization allows a better maintenance of lordosis with multiple level instrumentation and prevents adjacent segment degeneration. If pelvic incidence and sacral slope are high, L5-S1 should be fused because of elevated shear forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Cakir B, Carazzo C, Schmidt R et al (2009) Adjacent segment mobility after rigid and semirigid instrumentation of the lumbar spine. Spine 34:1287–1291

    Article  PubMed  Google Scholar 

  2. Cakir B, Richter M, Käfer W et al (2005) The impact of total lumbar disc replacement on segmental and total lumbar lordosis. Clin Biomech 20:357–354

    Article  Google Scholar 

  3. Chen H, Charles YP, Bogorin I et al (2011) Influence of 2 different dynamic stabilization systems on sagittal spino-pelvic alignment. J Spinal Disord Tech 24:37–43

    Article  PubMed  Google Scholar 

  4. Chung SS, Lee CH, Kang CS et al (2006) The effect of lumbar total disc replacement on the spinopelvic alignment and range of motion of the lumbar spine. J Spinal Disord Tech 19:307–311

    Article  PubMed  Google Scholar 

  5. Galbusera F, Bellini CM, Zweig T et al (2008) Design concepts in lumbar total disc arthroplasty. Eur Spine J 17:1635–1650

    Article  PubMed  Google Scholar 

  6. Gillet P (2003) The fate of the adjacent motion segments after lumbar fusion. J Spinal Disord Tech 16:338–345

    Article  PubMed  Google Scholar 

  7. Guigui P, Levassor N, Rillardon L et al (2003) Valeur physiologique des paramètres pelviens et rachidiens de l’équilibre sagittal du rachis. Analyse d’une série de 250 volontaires. Rev Chir Orthop Reparatrice Appar Mot 89:496–506

    PubMed  CAS  Google Scholar 

  8. Griffith SL, Shelokov AP, Buttner-Jantz K et al (1994) A multicenter retrospective study of the clinical results of the LINK SB Charité intervertebral prosthesis. The initial European experience. Spine 19:1842–1849

    Article  PubMed  CAS  Google Scholar 

  9. Grob D, Benini A, Junge A et al (2005) Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 30:324–331

    Article  PubMed  Google Scholar 

  10. Käfer W, Clessienne CB, Däxle M et al (2008) Posterior component impingement after lumbar total disc replacement. A radiographic analysis of 66 ProDisc-L prostheses in 56 patients. Spine 33:2444–2449

    Article  PubMed  Google Scholar 

  11. Kumar MN, Baklanov A, Chopin D (2001) Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J 10:314–319

    Article  PubMed  CAS  Google Scholar 

  12. Lee CK (1988) Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 13:375–377

    Article  PubMed  CAS  Google Scholar 

  13. Legaye J (2005) Unfavorable influence of the dynamic neutralization system on sagittal balance of the spine. Rev Chir Orthop Reparatrice Appar Mot 91:542–550

    PubMed  CAS  Google Scholar 

  14. Legaye J, Duval-Beaupère G, Hecquet J et al (1998) Pelvic incidence: a fundamental pelvic parameter for the three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103

    Article  PubMed  CAS  Google Scholar 

  15. Le Huec JC, Mathews H, Basso Y et al (2005) Clinical results of Maverick lumbar total disc replacement: two-year prospective follow-up. Orthop Clin North Am 36:315–322

    Article  Google Scholar 

  16. Le Huec JC, Basso Y, Mathews H et al (2005) The effect of single-level, total disc arthroplasty on sagittal balance parameters: a prospective study. Eur Spine J 14:480–486

    Article  Google Scholar 

  17. Lemaire JP, Carrier H, Sariali el H et al (2003) Clinical and radiological outcomes with the Charité artificial disc: a 10 year minimum follow-up. J Spinal Disord Tech 18:353–359

    Article  Google Scholar 

  18. Min JH, Jang JS, Jung B et al (2008) The clinical characteristics and risk factors for the adjacent segment degeneration in instrumented lumbar fusion. J Spinal Disord Tech 21:305–309

    Article  PubMed  Google Scholar 

  19. Niosi CA, Wilson DC, Zhu Q et al (2008) The effect of dynamic stabilization on facet joint contact forces: an in vitro investigation. Spine 33:19–26

    Article  PubMed  Google Scholar 

  20. Oda I, Cunningham BW, Buckley RA et al (1999) Does spinal kyphotic deformity influence the biomechanical characteristics of the adjacent motion segments? An in vivo animal model. Spine 24:2139–2146

    Article  PubMed  CAS  Google Scholar 

  21. Putzier M, Schneider SV, Funk JF et al (2005) The surgical treatment of the lumbar disc prolapse: nucleotomy with additional transpedicular dynamic stabilization versus nucleotomy alone. Spine 30:E109-E114

    Article  PubMed  Google Scholar 

  22. Roussouly P, Gollogly S, Berthonnaud E et al (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30:29–34

    Article  Google Scholar 

  23. Roussouly P, Nnadi C (2010) Sagittal plane deformity: an overview of interpretation and management. Eur Spine J 19:1824–1836

    Article  PubMed  Google Scholar 

  24. Schmoelz W, Huber JF, Nydegger T et al (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16:418–423

    Article  PubMed  CAS  Google Scholar 

  25. Schmoelz W, Huber JF, Nydegger T et al (2006) Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure. Eur Spine J 15:1276–1285

    Article  PubMed  CAS  Google Scholar 

  26. Schnake KJ, Schaeren S, Jeanneret B (2006) Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine 31:442–449

    Article  PubMed  Google Scholar 

  27. Schuller S, Charles YP, Steib JP (2011) Sagittal spinopelvic alignment and body mass index in patients with degenerative spondylolisthesis. Eur Spine J 20:713–719

    Article  PubMed  Google Scholar 

  28. Shono Y, Kaneda K, Abumi K et al (1998) Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine. Spine 23:1550–1558

    Article  PubMed  CAS  Google Scholar 

  29. Siepe CJ, Mayer HM, Heinz-Leisenheimer M et al (2007) Total lumbar disc replacement: different results for different levels. Spine 32:782–790

    Article  PubMed  Google Scholar 

  30. Stoll T, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11(Suppl 2):S170–S178

    PubMed  Google Scholar 

  31. Tournier C, Aunoble S, Le Huec JC et al (2007) Total disc arthroplasty: consequences for sagittal balance and lumbar spine movement. Eur Spine J 16:411–421

    Article  PubMed  CAS  Google Scholar 

  32. Tropiano P, Huang RC, Girardi FP et al (2005) Lumbar total disc replacement. 7 to 11 years follow-up. J Bone Joint Surg [Am] 87:490–496

    Google Scholar 

  33. Umehara S, Zindrick MR, Patwardhan AG et al (2000) The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine 25:1617–1624

    Article  PubMed  CAS  Google Scholar 

  34. Vaz G, Roussouly P, Berthonnaud E et al (2002) Sagittal morphology and equilibrium of spine and pelvis. Eur Spine J 11:80–87

    Article  PubMed  CAS  Google Scholar 

  35. Vialle R, Levassor N, Rillardon et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg [Am] 87:260–267

  36. Wilke HJ, Heuer F, Schmidt H (2009) Prospective design delineation and subsequent in vitro evaluation of a new posterior dynamic stabilization system. Spine 34:255–261

    Article  PubMed  Google Scholar 

  37. Zander T, Rohlmann A, Nagananda KB et al (2006) Effect of a posterior dynamic implant adjacent to a rigid spinal fixator. Clin Biomech 21:767–774

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.P. Charles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charles, Y., Walter, A., Schuller, S. et al. Dynamische Versorgung der Lendenwirbelsäule. Orthopäde 40, 703–712 (2011). https://doi.org/10.1007/s00132-011-1800-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-011-1800-z

Schlüsselwörter

Keywords

Navigation